Analisis dataAnalisis data adalah proses inspeksi, pembersihan dan pemodelan data dengan tujuan menemukan informasi yang berguna, menginformasikan kesimpulan dan mendukung pengambilan keputusan. Analisis data memiliki banyak sisi dan pendekatan, mencakup beragam teknik dengan berbagai nama, dan digunakan dalam berbagai bidang bisnis, ilmu pengetahuan, dan ilmu sosial. Dalam dunia bisnis saat ini, analisis data berperan dalam membuat keputusan lebih ilmiah dan membantu bisnis beroperasi lebih efektif.[1] Penggalian data adalah teknik analisis data tertentu yang berfokus pada pemodelan statistik dan penemuan pengetahuan untuk tujuan prediksi dan bukan murni deskriptif, sedangkan intelijen bisnis mencakup analisis data yang sangat bergantung pada agregasi, dengan fokus utama pada informasi bisnis.[2] Proses analisis dataAnalisis, mengacu pada membagi keseluruhan menjadi komponen-komponen yang terpisah untuk pemeriksaan individu.[3] Analisis data, adalah proses untuk memperoleh data mentah, dan selanjutnya mengubahnya menjadi informasi yang berguna untuk pengambilan keputusan oleh pengguna.[4] Data, dikumpulkan dan dianalisis untuk menjawab pertanyaan, menguji hipotesis, atau menyangkal teori.[5] Ahli statistik John Tukey, mendefinisikan analisis data pada tahun 1961, sebagai:
Ada beberapa fase yang dapat dibedakan, dijelaskan di bawah ini. Fase-fase tersebut berulang, di mana umpan balik dari fase selanjutnya dapat menghasilkan pekerjaan tambahan di fase sebelumnya.[7] Kerangka kerja CRISP, yang digunakan dalam penambangan data, memiliki langkah serupa. Persyaratan dataData diperlukan sebagai masukan untuk analisis, yang ditentukan berdasarkan kebutuhan mereka yang mengarahkan analisis atau pelanggan (yang akan menggunakan produk akhir analisis).[8][9] Jenis umum entitas di mana data akan dikumpulkan disebut sebagai unit eksperimen (misalnya, orang atau populasi orang). Variabel khusus mengenai populasi (misalnya, usia dan pendapatan) dapat ditentukan dan diperoleh. Data mungkin numerik atau kategorikal (yaitu, label teks untuk angka).[7] Pengumpulan dataData dikumpulkan dari berbagai sumber.[10][11] Persyaratan dapat dikomunikasikan oleh analis kepada penjaga data; seperti, personel Teknologi Informasi dalam suatu organisasi.[12] Data juga dapat dikumpulkan dari sensor di lingkungan, termasuk kamera lalu lintas, satelit, alat perekam, dll. Data juga dapat diperoleh melalui wawancara, unduhan dari sumber online, atau membaca dokumentasi.[7] Pengolahan dataFase siklus kecerdasan yang digunakan untuk mengubah informasi mentah menjadi kecerdasan atau pengetahuan yang dapat ditindaklanjuti secara konseptual mirip dengan fase dalam analisis data. Data, ketika awalnya diperoleh, harus diproses atau diatur untuk analisis.[13][14] Misalnya, ini mungkin melibatkan penempatan data ke dalam baris dan kolom dalam format tabel (dikenal sebagai data terstruktur) untuk analisis lebih lanjut, seringkali melalui penggunaan spreadsheet atau perangkat lunak statistik.[7] Pembersihan dataAnalisis data terkaitPemodelan dan algoritmaProduk dataKomunikasiData StorytellingData hasil analisis yang dilakukan harus mampu memberikan insight dalam bentuk alur carita yang jelas dan menarik. Hal mendasar dalam data storytelling yaitu mengenal siapa pemangku kepentingan yang menjadi target informasi, setelah itu apa yang perlu pemangku kepentingan tersebut ketahui dan apa mekanisme komunikasi yang digunakan.[15] Referensi
Bacaan lebih lanjut
|