A study on the fossil fish occurrences and habitat during the middle Paleozoic (480 million to 360 million years ago) is published by Sallan et al. (2018), fish originated in restricted, shallow intertidal-subtidal environments.[2]
A survey of Devonian fish fauna from Michigan is published by Stack & Sallan (2018).[3]
A study on the ecological diversification of thelodonts is published by Ferrón et al. (2018).[4]
A study on the identity of the aspidin (a primitive bone-like tissue of heterostracans) is published by Keating et al. (2018), who interpret aspidin as an acellular dermal bone.[6]
Redescription of Tesseraspis mosaica is published by Blieck, Elliott & Karatajūtė-Talimaa (2018).[7]
A study on the morphological and taxonomic diversity of pteraspidiforms is published by Romano, Sansom & Randle (2018).[8]
A study on the diversity of jaw shapes in modern and Paleozoic jawed fishes, evaluating whether the full extent of jaw morphological variation was established early in gnathostome evolutionary history, is published by Hill et al. (2018).[9]
New specimens of Brindabellaspis stensioi, providing new information on the morphology of the rostral region of the skull, are described from the Lower Devonian of the New South Wales (Australia) by King, Young & Long (2018).[10]
Redescription of the antiarchplacodermAsterolepis thule and a study on the age of the deposits preserving the fossils of this species is published by Newman & Den Blaauwen (2018).[11]
Description of bony pelvic plates in 32 specimens of Bothriolepis canadensis from the Upper DevonianEscuminac Formation (Canada) is published by Charest, Johanson & Cloutier (2018), who reject the interpretation of these structures as genital plates (suggested by Long et al., 2015),[12] and identify them as the pelvic girdle instead.[13]
Redescription of the antiarch placoderm Phymolepis cuifengshanensis and a study on the phylogenetic relationships of this species is published by Wang & Zhu (2018).[1]
A study on the morphology of the skull, especially the braincase of the petalichthyid placoderm Shearsbyaspis oepiki is published by Castiello & Brazeau (2018).[14]
Circular or near-circular patterned trace fossils, similar to underwater circles produced by male pufferfishes, are described from the Upper DevonianHongguleleng Formation (China) by Zong & Gong (2018), who consider it possible that these fossils may be structures made by male fish to attract females.[16]
Redescription of Gladbachus adentatus and a study on the phylogenetic relationships of the species is published by Coates et al. (2018).[17]
A study on the wear of a tooth whorl of a specimen of Edestus heinrichi, as well as on its implications for inferring the function of the tooth whorls in this species, is published by Itano (2018).[18]
New description of Edestus, providing new information on the anatomy of this taxon, is published online by Tapanila et al. (2018).[19]
A study on the teeth histology and vasculature of the oldest known tooth-bearing sharks, Leonodus carlsi and Celtiberina maderi, is published by Martinez-Perez et al. (2018).[21]
The first material referable to hybodont shark (a member of the genus Asteracanthus) is described from the Lower Jurassic (Toarcian) Rosso Ammonitico Formation (Italy) by Romano et al. (2018), providing new information on the dispersal of this genus in the Jurassic Tethys.[25]
Description of an articulated skeleton of a member of the palaeospinacid genus Synechodus from the Lower Cretaceous (Albian) Saint-Pô Formation (France), and a revision of the taxonomic history of the species assigned to the genus Synechodus, is published by Mollen & Hovestadt (2018).[28]
A study on the anatomy, paleobiology and paleoecology of the Eocenerequiem sharkEogaleus bolcensis is published by Marramà, Carnevale & Kriwet (2018).[33]
A study on the teeth mineralization process and teeth histology in extant and fossil members of the genus Hemipristis is published by Jambura et al. (2018).[35]
A study on the global and regional morphological variation of the teeth of the ground sharks and mackerel sharks across the Cretaceous–Paleogene boundary is published by Bazzi et al. (2018).[36]
A study on the anatomy and evolution of teeth of members of the families Megachasmidae and Cetorhinidae, based on data from recent and fossil teeth, is published by Mitchell, Ciampaglio & Jacquemin (2018).[37]
A study on the physiological, ecological and life-history traits which influenced the biogeographic distributions of cartilaginous fishes from the Neogene to the present is published by Villafaña & Rivadeneira (2018).[38]
A review of the present and past (Miocene–Pleistocene) shark and ray diversity in marine waters of Tropical America is published by Carrillo-Briceño et al. (2018).[39]
A study on the phylogenetic relationships of extant and fossil squalomorph sharks as indicated by teeth morphology is published by Flammensbeck et al. (2018).[40]
A study on the morphology and phylogenetic relationships of an early bony fish known from two partial skulls recovered from the Devonian (Emsian) Taemas Limestones of the Burrinjuck area (New South Wales, Australia), possibly belonging to the genus Ligulalepis (described on the basis of isolated scales), is published by Clement et al. (2018).[41]
Redescription of Elonichthys germari is published by Schindler (2018), who presents the first reconstruction of the skull of this species.[42]
Redescription of the neotype of the elonichthyidRhabdolepis macropterus is published by Schindler (2018), who presents new reconstruction of the skull of this species.[43]
A revision of ray-finned fishes from the Permian locality Buxières-les-Mines (Bourbon-l’Archambault Basin, France) is published by Štamberg (2018).[44]
A study on the evolutionary history of ray-finned fishes across the Cretaceous–Paleogene extinction event, as indicated by isolated fossil teeth preserved in a South Pacific sediment core spanning 72–43 Ma, is published by Sibert et al. (2018).[46]
A study on the morphological variation of the dorsal finlets in extant bichirs, testing the viability of these anatomic structures as a tool for taxonomic diagnoses in the study of fossil members of this group, is published by Coelho, Cupello & Brito (2018).[47]
New data on the reproductive biology of the species Saurichthys curionii and Saurichthys macrocephalus from the Middle Triassic Meride Limestone (Monte San Giorgio, Switzerland) is presented by Maxwell et al. (2018), who identify six specimens as unambiguously gravid.[48]
A study on the internal anatomy of the skulls of two Early Triassic specimens of Saurichthys, as well as on the phylogenetic relationships of saurichthyiforms, is published by Argyriou et al. (2018).[49]
A study on the diversity of body shapes of neopterygians from the Triassic to the Early Cretaceous is published by Clarke & Friedman (2018).[51]
Redescription and taxonomic reassessment of the pycnodontiform genus Cosmodus is published by Vullo et al. (2018).[52]
A study on 52 specimens of Pycnodus from the EoceneMonte BolcaLagerstätte (Italy), evaluating whether the morphological variability within the sample might be related to inter- or intraspecific variation, is published by Cawley et al. (2018).[53]
A study on the anatomical structure and possible function of the flank bar-scales of members of Pycnodontiformes is published by Capasso (2018).[54]
A revision of the phylogenetic relationships of the fossils fishes belonging to the group Halecomorphi is published by Ebert (2018).[55]
A redescription of Asialepidotus shingyiensis and a study on the phylogenetic relationships of the species is published by Xu & Ma (2018).[56]
A study on the phylogenetic relationships of the TriassicneopterygianTicinolepis, as well as on the relationships of the fossil neopterygians in general, is published by López-Arbarello & Sferco (2018).[57]
A study on the locomotion energetics of Leedsichthys problematicus, possible factors that drove the gigantism in pachycormiforms and the metabolic limits of body size in ray-finned fishes is published by Ferrón et al. (2018).[58]
An ichthyodectiform fossil specimen preserving a small skull and anterior part of the trunk is described from a core recovered from a well drilled in the Cape Verde Basin, ca. 400 km offshore from the West African Atlantic Margin, by Casson et al. (2018).[59]
A study on the evolutionary history of the family Catostomidae, based on data from molecules, morphology and fossil record, is published by Bagley, Mayden & Harris (2018).[60]
A study on the phylogenetic relationships of members of Acanthomorpha and on the timescale of the radiation of this group is published by Alfaro et al. (2018), who report that crown ages for five of the six major percomorph subclades, and for the bulk of the species diversity in the sixth, coincide with the Cretaceous–Paleogene boundary.[61]
A study on the morphology of the skeleton of Pholidophorus latiusculus, as well as on the phylogenetic relationships of this species, is published by Taverne (2018).[62]
A study on the bone histology of extant opahs, comparing it with bones of their extant and fossil relatives (including "Aipichthys" velifer), and testing the hypothesized link between endothermy and cellular bone (bone containing embedded osteocyte cells) in teleosts, is published by Davesne et al. (2018).[65]
An articulated skeleton of a juvenile toadfish distinct from Louckaichthys novosadi is described from the Oligocene Bituminous Marls Formation (Romania) by Pikryl et al. (2018).[66]
A study on the Pliocene fish fossils from the Kanapoi site (Kenya) and their implications for reconstructing lake and river environments in the Kanapoi Formation is published online by Stewart & Rufolo (2018).[71]
A study on both newly collected and earlier fossil material of Ventalepis ketleriensis from the Devonian (Famennian) of Latvia and central and northwestern Russia is published by Lebedev & Lukševičs (2018), who interpret the fossils as supporting the porolepiform affinities of this species, and name a new family Ventalepididae.[75]
Description of well-preserved pelvic fin skeleton of a specimen of Rhizodus hibberti from the Carboniferous (Viséan) Asbian Wardie Shales (United Kingdom) is published by Jeffery et al. (2018).[80]
A member of Acanthodiformes belonging to the family Cheiracanthidae. The type species is G. tenericostatus; genus also includes "Cheiracanthus" talimae Valiukevičius (1985).
A member of Holocephali belonging to the group Cochliodontiformes. The type species is A. multicuspidatus; genus also includes "Deltodopsis" bialveatus St. John & Worthen (1883).
A cartilaginous fish of uncertain affinities. Originally described as a possible member of the family Falcatidae; Ivanov (2022) considered its teeth to be only superficially similar to the teeth of Paleozoic falcatids, and considered it to be a possible neoselachian.[104] Genus includes new species C. ogiveformis and C. noricum.
A member of Hybodontiformes belonging to the superfamily Hybodontoidea. Genus includes new species L. triangulus. Announced in 2018; the final version of the article naming it was published in 2020.
Possibly a member of Stomiiformes belonging to the group Gonostomatoidei, of uncertain phylogenetic placement within the latter group. The type species is A. muscogeei.
A member of Ichthyodectiformes. Genus includes new species A. goshouraensis. Announced in 2018; the final version of the article naming it was published in 2020.
A member of Osteoglossiformes of uncertain phylogenetic placement. The type species is "Otolithus (Leptolepidarum)" pentangulatus Frost (1924); genus also includes new species A. torrensi.
A species of Clupea. The specific name is preoccupied by Clupea macrocephala Lacépède (1803); Yabumoto & Nazarkin (2020) coined a replacement name Clupea hanishinaensis.[136]
A beardfish. The type species is C. alabamae; genus also includes new species C. amberi, as well as "genus Polymixiidarum" beaury Schwarzhans (2010), "genus Veliferidarum" groenlandicus Schwarzhans (2004) and "genus Veliferidarum" harderi Schwarzhans (2003).
A member of Beryciformes belonging to the group Berycoidei, of uncertain phylogenetic placement within the latter group. The type species is E. stringeri; genus also includes new species E. compressus, as well as “genus Apogonidarum” maastrichtiensis Nolf & Stringer (1996) and “genus Apogonidarum” zideki Nolf & Stringer (1996).
A member of Elopiformes of uncertain phylogenetic placement. The type species is Otolithus (Lycopteridarum) rhenanus Weiler (1954); genus also includes Otolithus (Lycopteridarum) acutus Weiler (1954).
A member of the family Sciaenidae. The type species is "Genyonemus" karagiensis Bratishko, Schwarzhans & Reichenbacher (2015); genus also includes "Otolithus (Mugilidarum)" azerbaidjanicus Djafarova (2006), as well as new species L. caputoi.
A member of the family Sciaenidae. The type species is "Serranus" acuterostratus Rückert-Ülkümen (1996); genus might also include "Otolithus (Percidarum)" sigmoilinoides Pobedina (1956).
A member of the family Elopidae. The type species is "Otolithus (Leptolepidarum)" cuneiformis Frost (1924); genus also includes "Leptolepis" tenuirostris Stinton (1968) and "genus Protacanthopterygiorum" scalpellum Nolf (2004).
A member of the family Leptolepididaesensu lato. The type species is Otolithus (incertae sedis) withersi Frost (1926); genus also includes Otolithus (Salmonoidei) oncorhynchoides Weiler (1954).
^Marion Chevrinais; Zerina Johanson; Kate Trinajstic; John Long; Catherine Morel; Claude B. Renaud; Richard Cloutier (2018). "Evolution of vertebrate postcranial complexity: axial skeleton regionalization and paired appendages in a Devonian jawless fish". Palaeontology. 61 (6): 949–961. Bibcode:2018Palgy..61..949C. doi:10.1111/pala.12379. S2CID135291962.
^Michael J. Newman; Jan L. Den Blaauwen (2018). "A redescription of the endemic antiarch placoderm Asterolepis thule from the Middle Devonian (Givetian) of Shetland and its biostratigraphical horizon". Scottish Journal of Geology. 54 (2): 69–75. Bibcode:2018ScJG...54...69N. doi:10.1144/sjg2018-005. S2CID134584732.
^John A. Long; Elga Mark-Kurik; Zerina Johanson; Michael S. Y. Lee; Gavin C. Young; Zhu Min; Per E. Ahlberg; Michael Newman; Roger Jones; Jan den Blaauwen; Brian Choo; Kate Trinajstic (2018). "Copulation in antiarch placoderms and the origin of gnathostome internal fertilization". Nature. 517 (7533): 196–199. doi:10.1038/nature13825. hdl:2328/35425. PMID25327249. S2CID205240898.
^Wayne M. Itano (2018). "A tooth whorl of Edestus heinrichi (Chondrichthyes, Eugeneodontiformes) displaying progressive macrowear". Transactions of the Kansas Academy of Science. 121 (1–2): 125–133. doi:10.1660/062.121.0214. S2CID90764139.
^Christopher J. Duffin (2018). "A callorhynchid chimaeroid (Pisces, Holocephali) from the Nusplingen Plattenkalk (Late Jurassic, SW Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 289 (2): 161–175. doi:10.1127/njgpa/2018/0756. S2CID134583173.
^Allison W. Bronson; Royal H. Mapes; John G. Maisey (2018). "Chondrocranial morphology of Carcharopsis wortheni (Chondrichthyes, Euselachii incertae sedis) based on new material from the Fayetteville Shale (upper Mississippian, middle Chesterian)". Papers in Palaeontology. 4 (3): 349–362. Bibcode:2018PPal....4..349B. doi:10.1002/spp2.1110. S2CID134975540.
^Michael I. Coates; Kristen Tietjen (2018). "The neurocranium of the Lower Carboniferous shark Tristychius arcuatus (Agassiz, 1837)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 108 (1): 19–35. doi:10.1017/S1755691018000130. S2CID135297534.
^Marco Romano; Paolo Citton; Aangelo Cipriani; Simone Fabbi (2018). "First report of hybodont shark from the Toarcian Rosso Ammonitico Formation of Umbria-Marche Apennine (Polino area, Terni, Central Italy)". Italian Journal of Geosciences. 137 (1): 151–159. doi:10.3301/IJG.2018.01. hdl:11336/97916.
^Nibedita Rakshit; Mohd Shafi Bhat; Debarati Mukherjee; Sanghamitra Ray (2018). "First record of Mesozoic scroll coprolites: classification, characteristics, elemental composition and probable producers". Palaeontology. 62 (3): 451–471. doi:10.1111/pala.12409. S2CID133986672.
^Olivier Landemaine; Detlev Thies; Jens Waschkewitz (2018). "The Late Jurassic shark Palaeocarcharias (Elasmobranchii, Selachimorpha) – functional morphology of teeth, dermal cephalic lobes and phylogenetic position". Palaeontographica Abteilung A. 312 (5–6): 103–165. Bibcode:2018PalAA.312..103L. doi:10.1127/0375-0442/2018/0000/0085. S2CID146540287.
^Allison W. Bronson; John G. Maisey (2018). "Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian–Campanian)". Journal of Paleontology. 92 (4): 743–750. Bibcode:2018JPal...92..743B. doi:10.1017/jpa.2018.14. S2CID135179588.
^Brian L. Hoffman; Jeffrey S. Jensen; Scott A. Hageman (2018). "Dental structure of the Late Cretaceous (Maastrichtian) guitarfish (Neoselachii: Batoidea) Myledaphus pustulosus from the Hell Creek Formation of Garfield County, Montana". Transactions of the Kansas Academy of Science. 121 (3–4): 279–296. doi:10.1660/062.121.0412. S2CID92493020.
^Giuseppe Marramà; Andrea Engelbrecht; Thomas Mörs; Marcelo A. Reguero; Jürgen Kriwet (2018). "The southernmost occurrence of Brachycarcharias (Lamniformes, Odontaspididae) from the Eocene of Antarctica provides new information about the paleobiogeography and paleobiology of Paleogene sand tiger sharks". Rivista Italiana di Paleontologia e Stratigrafia. 124 (2): 283–298. doi:10.13130/2039-4942/9985.
^Jaime from the AURTHOR OF JAMIE FOXX WE GOT THE ALCEERTthe Neogene to the present (2018). "The modulating role of traits on the biogeographic dynamics of chondrichthyans from the Neogene to the present". Paleobiology. 44 (2): 251–262. Bibcode:2018Pbio...44..251V. doi:10.1017/pab.2018.7. hdl:10533/232139. S2CID90234863.
^Erin E. Maxwell; Thodoris Argyriou; Rudolf Stockar; Heinz Furrer (2018). "Re-evaluation of the ontogeny and reproductive biology of the Triassic fish Saurichthys (Actinopterygii, Saurichthyidae)". Palaeontology. 61 (4): 559–574. Bibcode:2018Palgy..61..559M. doi:10.1111/pala.12355. S2CID135337591.
^Guang-Hui Xu; Xin-Ying Ma (2018). "Redescription and phylogenetic reassessment of Asialepidotus shingyiensis (Holostei: Halecomorphi) from the Middle Triassic (Ladinian) of China". Zoological Journal of the Linnean Society. 184 (1): 95–114. doi:10.1093/zoolinnean/zlx105.
^Humberto G. Ferrón; Borja Holgado; Jeffrey J. Liston; Carlos Martínez-Pérez; Héctor Botella (2018). "Assessing metabolic constraints on the maximum body size of actinopterygians: locomotion energetics of Leedsichthys problematicus (Actinopterygii, Pachycormiformes)". Palaeontology. 61 (5): 775–783. Bibcode:2018Palgy..61..775F. doi:10.1111/pala.12369. hdl:10550/85571. S2CID134886017.
^Michael E. Alfaro; Brant C. Faircloth; Richard C. Harrington; Laurie Sorenson; Matt Friedman; Christine E. Thacker; Carl H. Oliveros; David Černý; Thomas J. Near (2018). "Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary". Nature Ecology & Evolution. 2 (4): 688–696. Bibcode:2018NatEE...2..688A. doi:10.1038/s41559-018-0494-6. PMID29531346. S2CID3865532.
^Tomáš Pikryl; Ionut Grădianu; Victor Georgescu; Giorgio Carnevale (2018). "A toadfish (Batrachoidiformes) from the Oligocene of the Eastern Carpathians (Piatra Neamt, Romania)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (2): 241–248. doi:10.1127/njgpa/2018/0715.
^ abHermione T. Beckett; Sam Giles; Zerina Johanson; Matt Friedman (2018). "Morphology and phylogenetic relationships of fossil snake mackerels and cutlassfishes (Trichiuroidea) from the Eocene (Ypresian) London Clay Formation". Papers in Palaeontology. 4 (4): 577–603. Bibcode:2018PPal....4..577B. doi:10.1002/spp2.1221. hdl:2027.42/146609. S2CID89750616.
^Giorgio Carnevale; James C. Tyler (2018). "The caudal skeleton of Arambourgthurus scombrurus (Arambourg, 1967), a Paleogene oceanic surgeonfish". Proceedings of the Biological Society of Washington. 131 (1): 101–110. doi:10.2988/17-00023. S2CID89971042.
^M. Bieńkowska-Wasiluk; M. Pałdyna (2018). "The Oligocene percoid fish, Oligoserranoides budensis (Heckel, 1856), from the Paratethys". Geologica Acta. 16 (1): 75–92. doi:10.1344/GeologicaActa2018.16.1.5.
^Dana J. Ehret; T. Lynn Harrell, Jr. (2018). "Feeding traces on a Pteranodon (Reptilia: Pterosauria) bone from the Late Cretaceous (Campanian) Mooreville Chalk in Alabama, USA". PALAIOS. 33 (9): 414–418. Bibcode:2018Palai..33..414E. doi:10.2110/palo.2018.024. S2CID135332458.
^Uthumporn Deesri; Lionel Cavin; Romain Amiot; Nathalie Bardet; Eric Buffetaut; Gilles Cuny; Stephen Giner; Jeremy E. Martin; Guillaume Suan (2018). "A mawsoniid coelacanth (Sarcopterygii: Actinistia) from the Rhaetian (Upper Triassic) of the Peygros quarry, Le Thoronet (Var, southeastern France)". Geological Magazine. 155 (1): 187–192. Bibcode:2018GeoM..155..187D. doi:10.1017/S0016756817000619. S2CID134867757.
^Piotr Skrzycki; Grzegorz Niedźwiedzki; Mateusz Tałanda (2018). "Dipnoan remains from the Lower-Middle Triassic of the Holy Cross Mountains and northeastern Poland, with remarks on dipnoan palaeobiogeography". Palaeogeography, Palaeoclimatology, Palaeoecology. 496: 332–345. Bibcode:2018PPP...496..332S. doi:10.1016/j.palaeo.2018.01.049.
^Anne Kemp (2018). "Adaptations to life in freshwater for Mioceratodus gregoryi, a lungfish from Redbank Plains, an Eocene locality in southeast Queensland, Australia". Alcheringa: An Australasian Journal of Palaeontology. 42 (2): 305–310. Bibcode:2018Alch...42..305K. doi:10.1080/03115518.2017.1395076. S2CID135389476.
^Edward B. Daeschler; Jason P. Downs (2018). "New description and diagnosis of Hyneria lindae (Sarcopterygii, Tristichopteridae) from the Upper Devonian Catskill Formation in Pennsylvania, U.S.A.". Journal of Vertebrate Paleontology. 38 (3): e1448834. Bibcode:2018JVPal..38E8834D. doi:10.1080/02724634.2018.1448834. S2CID89661336.
^Carole J. Burrow; Michael J. Newman; Jan L. den Blaauwen (2020). "Cheiracanthid acanthodians from the lower fossil fish-bearing horizons (Eifelian, Middle Devonian) of the Orcadian Basin, Scotland". Scottish Journal of Geology. 57: sjg2020-006. doi:10.1144/sjg2020-006. S2CID225203153.
^ abcIris Fuchs; Andrea Engelbrecht; Alexander Lukeneder; Jürgen Kriwet (2018). "New Early Cretaceous sharks (Chondrichthyes, Elasmobranchii) from deep-water deposits of Austria". Cretaceous Research. 84: 245–257. Bibcode:2018CrRes..84..245F. doi:10.1016/j.cretres.2017.11.013.
^ abIris Feichtinger; Andrea Engelbrecht; Alexander Lukeneder; Jürgen Kriwet (2018). "New chondrichthyans characterised by cladodont-like tooth morphologies from the Early Cretaceous of Austria, with remarks on the microstructural diversity of enameloid". Historical Biology: An International Journal of Paleobiology. 32 (6): 823–836. doi:10.1080/08912963.2018.1539971. S2CID92392461.
^Alexander O. Ivanov; Merlynd K. Nestell; Galina P. Nestell; Gorden L. Bell Jr. (2018). "New fish assemblages from the Middle Permian from the Guadalupe Mountains, West Texas, USA". Palaeoworld. 29 (2): 239–256. doi:10.1016/j.palwor.2018.10.003. S2CID134496257.
^Jürgen Pollerspöck; Christina K. Flammensbeck; Nicolas Straube (2018). "Palaeocentroscymnus (Chondrichthyes: Somniosidae), a new sleeper shark genus from Miocene deposits of Austria (Europe)". PalZ. 92 (3): 443–456. Bibcode:2018PalZ...92..443P. doi:10.1007/s12542-017-0398-9. S2CID134973773.
^Mohd Shafi Bhat; Sanghamitra Ray; P. M. Datta (2018). "A new hybodont shark (Chondrichthyes, Elasmobranchii) from the Upper Triassic Tiki Formation of India with remarks on its dental histology and biostratigraphy". Journal of Paleontology. 92 (2): 221–239. Bibcode:2018JPal...92..221B. doi:10.1017/jpa.2017.63. S2CID134754784.
^ abcdefghWerner W. Schwarzhans; Richard W. Huddleston; Gary T. Takeuchi (2018). "A late Santonian fish-fauna from the Eutaw Formation of Alabama reconstructed from otoliths". Rivista Italiana di Paleontologia e Stratigrafia. 124 (1): 45–72. doi:10.13130/2039-4942/9624.
^Yoshitaka Yabumoto; Koji Hirose; Paulo M. Brito (2018). "A new ichthyodectiform fish, Amakusaichthys goshouraensis gen. et sp. nov. from the Upper Cretaceous (Santonian) Himenoura Group in Goshoura, Amakusa, Kumamoto, Japan". Historical Biology: An International Journal of Paleobiology. 32 (3): 362–375. doi:10.1080/08912963.2018.1497022. S2CID91632554.
^ abGerald R. Smith; James E. Martin; Nathan E. Carpenter (2018). "Fishes of the Mio-Pliocene Western Snake River Plain and vicinity. IV. Fossil fishes from the Miocene Ellensburg Formation, south central Washington". Miscellaneous Publications. Museum of Zoology, University of Michigan. 204 (4): 1–19. hdl:2027.42/146545.
^Hiroki Sato; Alison M. Murray; Oksana Vernygora; Philip J. Currie (2018). "A rare, articulated sturgeon (Chondrostei: Acipenseriformes) from the Upper Cretaceous of Dinosaur Provincial Park, Alberta, Canada". Journal of Vertebrate Paleontology. 38 (4): (1)–(15). doi:10.1080/02724634.2018.1488137. S2CID92574712.
^ abcdefghijFrancis M. Elliott (2018). "An early actinopterygian ichthyofauna from the Scottish Lower Coal Measures Formation: Westphalian A (Bashkirian)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (4): 351–394. doi:10.1017/S1755691018000051. S2CID134335605.
^ abcdefgBettina Reichenbacher; Sorin Filipescu; Angela Miclea (2018). "A unique middle Miocene (Sarmatian) fish fauna from coastal deposits in the eastern Pannonian Basin (Romania)". Palaeobiodiversity and Palaeoenvironments. 99 (2): 177–194. doi:10.1007/s12549-018-0334-3. S2CID133891487.
^ abcdefghijklmWerner Schwarzhans (2018). "A review of Jurassic and Early Cretaceous otoliths and the development of early morphological diversity in otoliths". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 287 (1): 75–121. doi:10.1127/njgpa/2018/0707.
^Mikhail V. Nazarkin; Giorgio Carnevale (2018). "A Miocene pearleye, Benthalbella praecessor, sp. nov. (Teleostei, Aulopiformes), from Sakhalin Island, Russia: the first known skeletal record for the family Scopelarchidae". Journal of Vertebrate Paleontology. 38 (5): e1511992. Bibcode:2018JVPal..38E1992N. doi:10.1080/02724634.2018.1511992. S2CID91906009.
^ abcdeAlexandre F. Bannikov; Werner W. Schwarzhans; Giorgio Carnevale (2018). "Neogene Paratethyan croakers (Teleostei, Sciaenidae)". Rivista Italiana di Paleontologia e Stratigrafia. 124 (3): 535–571. doi:10.13130/2039-4942/10696.
^Yoshitaka Yabumoto; Mikhail V. Nazarkin (2018). "A new Miocene herring, Clupea macrocephala, from Sakaki Town, Hanishina County, Nagano, Japan". Paleontological Research. 22 (4): 352–363. doi:10.2517/2018PR002. S2CID134054831.
^Yoshitaka Yabumoto; Mihkail V. Nazarkin (2020). "Clupea hanishinaensis nomen novum, a replacement name for the Miocene clupeid fish Clupea macrocephala Yabumoto and Nazarkin, 2018 from Nagano, Japan". Paleontological Research. 24 (3): 238. doi:10.2517/2019PR011. S2CID220281581.
^Louis Taverne; Luigi Capasso (2018). "Osteology and relationships of Italoalbula pietrarojae gen. and sp. nov. (Teleostei, Albuliformes) from the Marine Cretaceous of Pietraroja (Campania, Southern Italy)". Thalassia Salentina (Data Set). 40: 95–118. doi:10.1285/i15910725v40p95.
^ abAlison M. Murray; Darla K. Zelenitsky; Donald B. Brinkman; Andrew G. Neuman (2018). "Two new Palaeocene osteoglossomorphs from Canada, with a reassessment of the relationships of the genus †Joffrichthys, and analysis of diversity from articulated versus microfossil material". Zoological Journal of the Linnean Society. 183 (4): 907–944. doi:10.1093/zoolinnean/zlx100.
^Sarah Z. Gibson (2018). "A new species of Lasalichthys (Actinopterygii, Redfieldiiformes) from the Upper Triassic Dockum Group of Howard County, Texas, with revisions to the genera Lasalichthys and Synorichthys". Journal of Vertebrate Paleontology. 38 (5): e1513009. Bibcode:2018JVPal..38E3009G. doi:10.1080/02724634.2018.1513009. S2CID92328870.
^Shinya Miyata; Yoshitaka Yabumoto; Hiromichi Hirano (2018). "Nipponocypris takayamai, a new species of cyprinid fish from the Nogami Formation (Middle Pleistocene) in the southern part of the Kusu Basin, Oita, Japan". Paleontological Research. 22 (3): 218–238. doi:10.2517/2017PR021. S2CID134594536.
^Tao Yang; Li Zhang; Wenjia Li; Jingwei Jia; Lei Han; Yuxin Zhang; Yingquan Chen; Defei Yan (2018). "New schizothoracine from Oligocene of Qaidam Basin, northern Tibetan Plateau, China, and its significance". Journal of Vertebrate Paleontology. 38 (2): e1442840. Bibcode:2018JVPal..38E2840Y. doi:10.1080/02724634.2018.1442840. S2CID91174496.
^Kleyton M. Cantalice; Jesús Alvarado-Ortega; Abril Alaniz-Galvan (2018). "Paleoserranus lakamhae gen. et sp. nov., a Paleocene seabass (Perciformes: Serranidae) from Palenque, Chiapas, southeastern Mexico". Journal of South American Earth Sciences. 83: 137–146. Bibcode:2018JSAES..83..137C. doi:10.1016/j.jsames.2018.01.010.
^Bouziane Khalloufi; Khadija El Houssaini Darif; Essaid Jourani; Fatima Khaldoune; Nour-Eddine Jalil (2018). "A new Palaeocene Megalopidae (Teleostei, Elopomorpha) from the phosphate basins of Morocco". Historical Biology: An International Journal of Paleobiology. 31 (9): 1256–1265. doi:10.1080/08912963.2018.1443327. S2CID89655020.
^Sergio Bogan; Víctor H. Contreras; Federico Agnolin; Rodrigo L. Tomassini; Silvio Peralta (2018). "New genus and species of Anablepidae (Teleostei, Cyprinodontiformes) from the Late Miocene of Argentina". Journal of South American Earth Sciences. 88: 374–384. Bibcode:2018JSAES..88..374B. doi:10.1016/j.jsames.2018.09.009. hdl:11336/83275. S2CID133929494.
^Giorgio Carnevale; Alexandre F. Bannikov (2018). "A sailfin velifer (Lampridiformes, Veliferidae) fish from the Eocene of Monte Bolca, Italy". Bollettino della Società Paleontologica Italiana. 57 (3): 175–186. doi:10.4435/BSPI.2018.11 (inactive 2024-11-20).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
^Robert E. Weems (2020). "Additions to the bony fish fauna from the early Eocene Nanjemoy Formation of Maryland and Virginia (U.S.A.)". The Mosasaur. The Journal of the Delaware Valley Paleontological Society. XI: 117–152.
^P. Guillermina Giordano; Cecilia A. Succar; Laura Codorniú; Alberto L. Cione; Gloria Arratia (2018). "Zurupleuropholis gen. nov. (Teleostei, Albian, Argentina), first pleuropholids from the Cretaceous of South America". Cretaceous Research. 84: 223–239. Bibcode:2018CrRes..84..223G. doi:10.1016/j.cretres.2017.11.017. hdl:11336/91831.
^Jennifer Alice Clack; Thomas James Challands; Timothy Richard Smithson; Keturah Zoe Smithson (2018). "Newly recognized Famennian lungfishes from East Greenland reveal tooth plate diversity and blur the Devonian–Carboniferous boundary". Papers in Palaeontology. 5 (2): 261–279. doi:10.1002/spp2.1242. S2CID134074159.
^Federico L. Agnolin; Octávio Mateus; Jesper Milàn; Marco Marzola; Oliver Wings; Jan Schulz Adolfssen; Lars B. Clemmensen (2018). "Ceratodus tunuensis, sp. nov., a new lungfish (Sarcopterygii, Dipnoi) from the Upper Triassic of central East Greenland". Journal of Vertebrate Paleontology. 38 (2): e1439834. Bibcode:2018JVPal..38E9834A. doi:10.1080/02724634.2018.1439834. S2CID90666275.
^Paulo M. Brito; Camila Cupello; Yoshitaka Yabumoto; Joseph V. Hell; Michel Brunet; Olga Otero (2018). "First occurrence of a mawsoniid (Sarcopterygii: Actinistia), Mawsonia soba sp. nov., in pre-Aptian Cretaceous deposits from Cameroon". Cretaceous Research. 86: 91–96. Bibcode:2018CrRes..86...91B. doi:10.1016/j.cretres.2017.12.014. S2CID134274774.
^Mohd Shafi Bhat; Sanghamitra Ray (2018). "A record of new lungfishes (Osteichthyes: Dipnoi) from the Carnian (Upper Triassic) of India". Historical Biology: An International Journal of Paleobiology. 32 (3): 428–437. doi:10.1080/08912963.2018.1499020. S2CID92040062.