To the naked eye Acrux appears as a single star, but it is actually a multiple star system containing six components. Through optical telescopes, Acrux appears as a triple star, whose two brightest components are visually separated by about 4 arcseconds and are known as Acrux A and Acrux B, α1 Crucis and α2 Crucis, or α Crucis A and α Crucis B. Both components are B-type stars, and are many times more massive and luminous than the Sun. This system was the second ever to be recognized as a binary, in 1685 by a Jesuit priest.[16] α1 Crucis is itself a spectroscopic binary with components designated α Crucis Aa (officially named Acrux, historically the name of the entire system)[17][18] and α Crucis Ab. Its two component stars orbit every 76 days at a separation of about 1 astronomical unit (AU).[11]HR 4729, also known as Acrux C, is a more distant companion, forming a triple star through small telescopes. C is also a spectroscopic binary, which brings the total number of stars in the system to at least five.
The historical name Acrux for α1 Crucis is an "Americanism" coined in the 19th century, but entering common use only by the mid 20th century.[20][better source needed] In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN)[21] to catalog and standardize proper names for stars. The WGSN states that in the case of multiple stars the name should be understood to be attributed to the brightest component by visual brightness.[22] The WGSN approved the name Acrux for the star Acrux Aa on 20 July 2016 and it is now so entered in the IAU Catalog of Star Names.[18]
In Chinese, 十字架 (Shí Zì Jià, "Cross"), refers to an asterism consisting of Acrux, Mimosa, Gamma Crucis and Delta Crucis.[24] Consequently, Acrux itself is known as 十字架二 (Shí Zì Jià èr, "the Second Star of Cross").[25]
The two components, α1 and α2 Crucis, are separated by 4 arcseconds. α1 is magnitude 1.40 and α2 is magnitude 2.09, both early class B stars, with surface temperatures of about 28,000 and 26,000 K, respectively. Their luminosities are 25,000 and 16,000 times that of the Sun. α1 and α2 orbit over such a long period that motion is only barely seen. From their minimum separation of 430 astronomical units, the period is estimated to be around 1,500 years.[3]
α1 is itself a spectroscopic binary star, with its components thought to be around 14 and 10 times the mass of the Sun and orbiting in only 76 days at a separation of about 1 AU. The masses of α2 and the brighter component of α1 suggest that the stars will someday expand into blue and red supergiants (similar to Betelgeuse and Antares) before exploding as supernovae.[11] Component Ab may perform electron capture in the degenerate O+Ne+Mg core and trigger a supernova explosion,[27][28] otherwise it will become a massive white dwarf.[11]
Photometry with the TESS satellite has shown that one of the stars in the α Crucis system is a β Cephei variable, although α1 and α2 Crucis are too close for TESS to resolve and determine which one is the pulsator.[5]
Rizzuto and colleagues determined in 2011 that the α Crucis system was 66% likely to be a member of the Lower Centaurus–Crux sub-group of the Scorpius–Centaurus association. It was not previously seen to be a member of the group.[29] A bow shock is present around α Crucis, and is visible in the infrared spectrum, but is not aligned with α Crucis; the bow shock likely formed from large-scale motions in the interstellar matter.[30]
The cooler, less-luminous B-class star HR 4729 (HD 108250) lies 90 arcseconds away from triple star system α Crucis and shares its motion through space, suggesting it may be gravitationally bound to it, and it is therefore generally assumed to be physically associated.[31][32] It is itself a spectroscopic binary system, sometimes catalogued as component C (Acrux C) of the Acrux multiple system. Another fainter visual companion listed as component D or Acrux D. A further seven faint stars are also listed as companions out to a distance of about two arc-minutes.[33]
On 2 October 2008, the Cassini–Huygens spacecraft resolved three of the components (A, B and C) of the multiple star system as Saturn's disk occulted it.[34][35]
^ abHR 4729 and Acrux A are separated by 90 arcseconds, resulting in a projected separation of 9400 AU/0.15 light years. This combined binary system has an estimated orbital period of 120,000 years.
^ abCorben, P. M. (1966). "Photoelectric magnitudes and colours for bright southern stars". Monthly Notes of the Astron. Soc. Southern Africa. 25: 44. Bibcode:1966MNSSA..25...44C.
^Houk, Nancy (1979), "Michigan catalogue of two-dimensional spectral types for the HD stars", Ann Arbor: Dept. Of Astronomy, 1, Bibcode:1978mcts.book.....H
^Wilson, Ralph Elmer (1953). "General Catalogue of Stellar Radial Velocities". Carnegie Institute Washington D.C. Publication. Bibcode:1953GCRV..C......0W.
^Thackeray, A. D.; Wegner, G. (April 1980), "An improved spectroscopic orbit for α1 Crucis", Monthly Notices of the Royal Astronomical Society, 191 (2): 217–220, Bibcode:1980MNRAS.191..217T, doi:10.1093/mnras/191.2.217
^ abDravins, Dainis; Jensen, Hannes; Lebohec, Stephan; Nuñez, Paul D. (2010). "Stellar intensity interferometry: Astrophysical targets for sub-milliarcsecond imaging". Optical and Infrared Interferometry II. Proceedings of the SPIE. Vol. 7734. pp. 77340A. arXiv:1009.5815. Bibcode:2010SPIE.7734E..0AD. doi:10.1117/12.856394. S2CID55641060.
^Bordeleau, André G. (12 August 2013). "Federative Republic of Brazil: Constellations in the Breeze". Flags of the Night Sky. New York: Springer. pp. 1–72. doi:10.1007/978-1-4614-0929-8_1. ISBN978-1-4614-0928-1.
^Kunitzsch, Paul; Smart, Tim (2006). A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations (2nd rev. ed.). Cambridge, Massachusetts: Sky Pub. ISBN978-1-931559-44-7.
^Hessman, F. V.; Dhillon, V. S.; Winget, D. E.; Schreiber, M. R.; Horne, K.; Marsh, T. R.; Guenther, E.; Schwope, A.; Heber, U. (2010). "On the naming convention used for multiple star systems and extrasolar planets". arXiv:1012.0707 [astro-ph.SR].
^Memoirs of the Rev. Walter M. Lowrie: missionary to China (1849), p. 93. Described as an "Americanism" in The Geographical Journal, vol. 92, Royal Geographical Society, 1938.