Clonidine was patented in 1961 and came into medical use in 1966.[15][16][17] It is available as a generic medication.[13] In 2022, it was the 71st most commonly prescribed medication in the United States, with more than 9million prescriptions.[18][19]
Clonidine may improve symptoms of attention deficit hyperactivity disorder in some people but causes many adverse effects and the beneficial effect is modest.[22] In Australia, clonidine is an accepted but not approved use for ADHD by the TGA.[23] Clonidine, along with methylphenidate, has been studied for treatment of ADHD.[24][25][26] While not as effective as methylphenidate in treating ADHD, clonidine does offer some benefit;[24] it can also be useful in combination with stimulant medications.[27] Some studies show clonidine to be more sedating than guanfacine, which may be better at bedtime along with an arousing stimulant in the morning.[28][29] Clonidine has been used to reduce sleep disturbances in ADHD, including to help offset stimulant-associated insomnia.[30][31][32][33] Unlike stimulant medications, clonidine is regarded as having no abuse potential, and may even be used to reduce abuse of drugs including nicotine and cocaine.[34]
In the US, only the extended-release form of clonidine is approved for ADHD treatment.[35]
Clonidine has also been suggested as a treatment for rare instances of dexmedetomidine withdrawal.[41]
Spasticity
Clonidine has some role in the treatment of spasticity caused by spinal cord injury, acting principally by inhibiting excessive sensory transmission below the level of injury[clarify]. Its use, however, is mainly as a second or third line agent, due to side effects such as hypotension, bradycardia, and drowsiness.[42] Clonidine can be administered intrathecally,[43] which confers various benefits, including a reduction or prevention of the blood pressure lowering effects and increased effectiveness against spasticity.[44] The effectiveness of intrathecal clonidine is comparable to that of intrathecal baclofen for spasticity.[44]
Clonidine suppression test
The reduction in circulating norepinephrine by clonidine was used in the past as an investigatory test for phaeochromocytoma, which is a catecholamine-synthesizing tumor, usually found in the adrenal medulla.[45] In a clonidine suppression test, plasma catecholamine levels are measured before and 3 hours after a 0.3 mg oral test dose has been given to the patient. A positive test occurs if there is no decrease in plasma levels.[45]
Light-activated derivatives of clonidine (adrenoswitches) have been developed for research purposes and shown to control pupillary reflex with light in blind mice by topical application.[66]
Pregnancy and breastfeeding
It is classified by the TGA of Australia as pregnancy category B3, which means that it has shown some detrimental effects on fetal development in animal studies, although the relevance of this to human beings is unknown.[67] Clonidine appears in high concentration in breast milk; a nursing infant's serum clonidine concentration is approximately 2/3 of the mother's.[68] Caution is warranted in women who are pregnant, planning to become pregnant, or are breastfeeding.[69]
Adverse effects
The principal adverse effects of clonidine are sedation, dry mouth, and hypotension (low blood pressure).[7]
Because clonidine suppresses sympathetic outflow, resulting in lower blood pressure, sudden discontinuation can result in acute hypertension due to a rebound in sympathetic outflow. In extreme cases, this can result in a hypertensive crisis, which is a medical emergency.[71]
Clonidine therapy should generally be gradually tapered when discontinuing therapy to avoid rebound effects from occurring. Treatment of clonidine withdrawal hypertension depends on the severity of the condition. Reintroduction of clonidine for mild cases, alpha and beta blockers for more urgent situations. Beta blockers should never be used alone to treat clonidine withdrawal as alpha vasoconstriction would still continue.[72][73]
The Ki refers to a drug's affinity for a receptor. The smaller the Ki, the higher the affinity for that receptor.[80] Reported imidazoline-2 binding is measured in the cortex — I2 receptor bindings measured in stomach membranes are much lower.[81]
Clonidine also acts as an agonist at imidazoline-1 (I1) receptors in the brain, and it is hypothesized that this effect may contribute to reducing blood pressure by reducing signaling in the sympathetic nervous system; this effect acts upstream of the central α2 agonist effect of clonidine.[12]: 201–203 [82]
Clonidine may also cause bradycardia, theoretically by increasing signaling through the vagus nerve. When given intravenously, clonidine can temporarily increase blood pressure by stimulating α1 receptors in smooth muscles in blood vessels.[83] This hypertensive effect is not usual when clonidine is given orally or by the transdermal route.[12]: 201–203
Plasma concentration of clonidine exceeding 2.0 ng/mL does not provide further blood pressure reduction.[84]
Attention deficit hyperactivity disorder
In the setting of attention deficit hyperactivity disorder (ADHD), clonidine's molecular mechanism of action occurs due to its agonism at the α2A adrenergic receptor, the subtype of the adrenergic receptor that is most principally found in the brain. Within the brain, the α2A adrenergic receptors are found within the prefrontal cortex (PFC), among other areas. The α2A adrenergic receptors are found on the presynaptic cleft of a given neuron, and, when activated by an agonist, the effect on downstream neurons is inhibitory. The inhibition is accomplished by preventing the secretion of the neurotransmitter norepinephrine. Thus, clonidine's agonism on α2A adrenergic receptors in the PFC inhibits the action of downstream neurons by preventing the secretion of norepinephrine.[85]
This mechanism is similar to the brain's physiological inhibition of PFC neurons by the locus ceruleus (LC), which secretes norepinephrine into the PFC. Although norepinephrine can also bind to target adrenergic receptors on the downstream neuron (otherwise inducing a stimulatory effect), norepinephrine also binds to α2A adrenergic receptors (akin to clonidine's mechanism of action), inhibiting the release of norepinephrine by that neuron and inducing an inhibitory effect. Because the PFC is required for working memory and attention, it is thought that clonidine's inhibition of PFC neurons helps to eliminate irrelevant attention (and subsequent behaviors), improving the person's focus and correcting deficits in attention.[85]
Growth hormone test
Clonidine stimulates release of GHRH hormone from the hypothalamus, which in turn stimulates pituitary release of growth hormone.[86] This effect has been used as part of a "growth hormone test," which can assist with diagnosing growth hormone deficiency in children.[87]
Pharmacokinetics
After being ingested, clonidine is absorbed into the blood stream rapidly with an overall bioavailability around 70–80%.[4]Peak concentrations in human plasma occur within 60–90 minutes for the "immediate release" (IR) version of the drug, which is shorter than the "extended release" (ER/XR) version.[88] Clonidine is fairly lipid soluble with the logarithm of its partition coefficient (log P) equal to 1.6;[89][88] to compare, the optimal log P to allow a drug that is active in the human central nervous system to penetrate the blood brain barrier is 2.0.[90] Less than half of the absorbed portion of an orally administered dose will be metabolized by the liver into inactive metabolites, with roughly the other half being excreted unchanged by the kidneys.[88] About one-fifth of an oral dose will not be absorbed, and is thus excreted in the feces.[88] Work with liver microsomes shows in the liver clonidine is primarily metabolized by CYP2D6 (66%), CYP1A2 (10–20%), and CYP3A (0–20%) with negligible contributions from the less abundant enzymes CYP3A5, CYP1A1, and CYP3A4.[11] 4-hydroxyclonidine, the main metabolite of clonidine, is also an α2A agonist but is non lipophilic and is not believed to contribute to the effects of clonidine since it does not cross the blood–brain barrier.[91][92]
Measurements of the half-life of clonidine vary widely, between 6 and 23 hours, with the half-life being greatly affected by and prolonged in the setting of poor kidney function.[88] Variations in half-life may be partially attributable to CYP2D6 genetics.[11] Some research has suggested the half-life of clonidine is dose dependent and approximately doubles upon chronic dosing,[93] while other work contradicts this.[6] Following a 0.3 mg oral dose, a small study of five patients by Dollery et al. (1976) found half-lives ranging between 6.3 and 23.4 hours (mean 12.7).[94] A similar N=5 study by Davies et al. (1977) found a narrower range of half-lives, between 6.7 and 13 hours (mean 8.6),[4] while an N=8 study by Keraäen et al. that included younger patients found a somewhat shorter mean half-life of 7.5 hours.[95]
History
Clonidine was introduced in 1966.[96] It was first used as a hypertension treatment under the trade name of Catapres.[97]
Society and culture
Brand names
As of June 2017, clonidine is marketed under many brand names worldwide: Arkamin, Aruclonin, Atensina, Catapin, Catapres, Catapresan, Catapressan, Chianda, Chlofazoline, Chlophazolin, Clonid-Ophtal, Clonidin, Clonidina, Clonidinã, Clonidine, Clonidine hydrochloride, Clonidinhydrochlorid, Clonidini, Clonidinum, Clonigen, Clonistada, Clonnirit, Clophelinum, Dixarit, Duraclon, Edolglau, Haemiton, Hypodine, Hypolax, Iporel, Isoglaucon, Jenloga, Kapvay, Klofelino, Kochaniin, Lonid, Melzin, Menograine, Normopresan, Paracefan, Pinsanidine, Run Rui, and Winpress.[98] It is marketed as a combination drug with chlortalidone as Arkamin-H, Bemplas, Catapres-DIU, and Clorpres, and in combination with bendroflumethiazide as Pertenso.[98]
^ abcDavies DS, Wing AM, Reid JL, Neill DM, Tippett P, Dollery CT (May 1977). "Pharmacokinetics and concentration-effect relationships of intervenous and oral clonidine". Clinical Pharmacology and Therapeutics. 21 (5): 593–601. doi:10.1002/cpt1977215593. PMID870272. S2CID5566079.
^"Catapres- clonidine hydrochloride tablet". DailyMed. 6 September 2016. Archived from the original on 4 August 2020. Retrieved 21 December 2019. The pharmacokinetics of clonidine is dose-proportional in the range of 100 to 600 µg.The absolute bioavailability of clonidine on oral administration is 70% to 80%. Peak plasma clonidine levels are attained in approximately 1 to 3 hours.
^"Catapres- clonidine hydrochloride tablet". DailyMed. 6 September 2016. Archived from the original on 4 August 2020. Retrieved 21 December 2019. Catapres tablets act relatively rapidly. The patient's blood pressure declines within 30 to 60 minutes after an oral dose, the maximum decrease occurring within 2 to 4 hours.
^ ab"Catapres- clonidine hydrochloride tablet". DailyMed. 6 September 2016. Archived from the original on 4 August 2020. Retrieved 21 December 2019. Following intravenous administration, clonidine displays biphasic disposition with a distribution half-life of about 20 minutes and an elimination half-life ranging from 12 to 16 hours. The half-life increases up to 41 hours in patients with severe impairment of renal function. Clonidine crosses the placental barrier. It has been shown to cross the blood–brain barrier in rats.
^"Kapvay". RxList. Archived from the original on 12 October 2017. Retrieved 30 October 2014.
^Stähle H (June 2000). "A historical perspective: development of clonidine". Best Practice & Research Clinical Anaesthesiology. 14 (2): 237–246. doi:10.1053/bean.2000.0079.
^"Catapres- clonidine hydrochloride tablet". DailyMed. 6 September 2016. Archived from the original on 4 August 2020. Retrieved 21 December 2019. Slowing of the pulse rate has been observed in most patients given clonidine, but the drug does not alter normal hemodynamic response to exercise. Other studies in patients have provided evidence of a reduction in plasma renin activity and in the excretion of aldosterone and catecholamines.
^Connor DF, Fletcher KE, Swanson JM (December 1999). "A meta-analysis of clonidine for symptoms of attention-deficit hyperactivity disorder". Journal of the American Academy of Child and Adolescent Psychiatry. 38 (12): 1551–1559. doi:10.1097/00004583-199912000-00017. PMID10596256.
^Rossi, S, ed. (2013). Australian Medicines Handbook (2013 ed.). Adelaide: The Australian Medicines Handbook Unit Trust. ISBN978-0-9805790-9-3.
^ abPalumbo DR, Sallee FR, Pelham WE, Bukstein OG, Daviss WB, McDERMOTT MP (February 2008). "Clonidine for attention-deficit/hyperactivity disorder: I. Efficacy and tolerability outcomes". Journal of the American Academy of Child and Adolescent Psychiatry. 47 (2): 180–188. doi:10.1097/chi.0b013e31815d9af7. PMID18182963.
^Daviss WB, Patel NC, Robb AS, McDERMOTT MP, Bukstein OG, Pelham WE, et al. (February 2008). "Clonidine for attention-deficit/hyperactivity disorder: II. ECG changes and adverse events analysis". Journal of the American Academy of Child and Adolescent Psychiatry. 47 (2): 189–198. doi:10.1097/chi.0b013e31815d9ae4. PMID18182964.
^Nguyen M, Tharani S, Rahmani M, Shapiro M (March 2014). "A review of the use of clonidine as a sleep aid in the child and adolescent population". Clinical Pediatrics. 53 (3): 211–216. doi:10.1177/0009922813502123. PMID24027233. S2CID742140.
^Hoban TF (March 2004). "Assessment and treatment of disturbed sleep in attention deficit hyperactivity disorder". Expert Review of Neurotherapeutics. 4 (2): 307–316. doi:10.1586/14737175.4.2.307. PMID15853572. S2CID35000868.
^Schachar R, Ickowicz A (1999). "Pharmacological Treatment of Attention-Deficit/HyperactivityDisorder". Handbook of Disruptive Behavior Disorders. Springer US. pp. 221–254. doi:10.1007/978-1-4615-4881-2_10. ISBN978-1-4613-7214-1.
^Wilens TE, Biederman J, Spencer T (1994). "Clonidine for sleep disturbances associated with attention-deficit hyperactivity disorder". Journal of the American Academy of Child and Adolescent Psychiatry. 33 (3): 424–426. doi:10.1097/00004583-199403000-00018. PMID8169189.
^Kukoyi A, Coker S, Lewis L, Nierenberg D (January 2013). "Two cases of acute dexmedetomidine withdrawal syndrome following prolonged infusion in the intensive care unit: Report of cases and review of the literature". Human & Experimental Toxicology. 32 (1): 107–110. doi:10.1177/0960327112454896. PMID23111887. S2CID31570614.
^Smith HS, Deer TR, Staats PS, Singh V, Sehgal N, Cordner H (March 2008). "Intrathecal drug delivery". Pain Physician. 11 (2 Suppl): S89 –S104. doi:10.36076/ppj.2008/11/S89. PMID18443642.
^ abRémy-Néris O, Denys P, Bussel B (November 2001). "Intrathecal clonidine for controlling spastic hypertonia". Physical Medicine and Rehabilitation Clinics of North America. 12 (4): 939–51, ix. doi:10.1016/S1047-9651(18)30040-8. PMID11723871.
^van der Kolk BA (September–October 1987). "The drug treatment of post-traumatic stress disorder". Journal of Affective Disorders. 13 (2): 203–213. doi:10.1016/0165-0327(87)90024-3. PMID2960712.
^Sutherland SM, Davidson JR (June 1994). "Pharmacotherapy for post-traumatic stress disorder". The Psychiatric Clinics of North America. 17 (2): 409–423. doi:10.1016/S0193-953X(18)30122-9. PMID7937367.
^Boehnlein JK, Kinzie JD (March 2007). "Pharmacologic reduction of CNS noradrenergic activity in PTSD: the case for clonidine and prazosin". Journal of Psychiatric Practice. 13 (2): 72–78. doi:10.1097/01.pra.0000265763.79753.c1. PMID17414682. S2CID1607064.
^Najjar F, Weller RA, Weisbrot J, Weller EB (April 2008). "Post-traumatic stress disorder and its treatment in children and adolescents". Current Psychiatry Reports. 10 (2): 104–108. doi:10.1007/s11920-008-0019-0. PMID18474199. S2CID23494905.
^Ziegenhorn AA, Roepke S, Schommer NC, Merkl A, Danker-Hopfe H, Perschel FH, et al. (April 2009). "Clonidine improves hyperarousal in borderline personality disorder with or without comorbid posttraumatic stress disorder: a randomized, double-blind, placebo-controlled trial". Journal of Clinical Psychopharmacology. 29 (2): 170–173. doi:10.1097/JCP.0b013e31819a4bae. PMID19512980. S2CID31292297.
^Giannini AJ, Extein I, Gold MS, Pottash AL, Castellani S (1983). "Clonidine in mania". Drug Development Research. 3 (1): 101–105. doi:10.1002/ddr.430030112. S2CID85093127.
^Patel SS, Dunn CJ, Bryson HM (1996). "Epidural clonidine: a review of its pharmacology and efficacy in the management of pain during labour and postoperative and intractable pain". CNS Drugs. 6 (6): 474–497. doi:10.2165/00023210-199606060-00007. S2CID72544106.
^Egolf A, Coffey BJ (February 2014). "Current pharmacotherapeutic approaches for the treatment of Tourette syndrome". Drugs of Today. 50 (2): 159–179. doi:10.1358/dot.2014.50.2.2097801. PMID24619591.
^Ryan TJ, Holyoak R, Vlok R, Melhuish T, Hodge A, Binks M, et al. (February 2019). "Intra-articular Alpha-2 Agonists as an Adjunct to Local Anesthetic in Knee Arthroscopy: A Systematic Review and Meta-Analysis". J Knee Surg. 32 (2): 138–145. doi:10.1055/s-0038-1636909. PMID29534270. S2CID3861878.
^ ab"Catapres 150 Tablets Catapres Ampoules"(PDF). TGA eBusiness Services. Boehringer Ingelheim Pty Limited. 28 February 2013. Archived from the original on 16 January 2017. Retrieved 27 November 2013.
^"Clonidine". Drugs and Lactation Database (LactMed). National Library of Medicine (US). 2006. PMID30000689. Archived from the original on 5 December 2020. Retrieved 5 January 2019.
^"Clonidine". Prescription Marketed Drugs. www.drugsdb.eu. Archived from the original on 28 March 2012. Retrieved 2 August 2011.
^Brayfield, A, ed. (13 January 2014). "Clonidine". Martindale: The Complete Drug Reference. London, UK: Pharmaceutical Press. Archived from the original on 28 August 2021. Retrieved 28 June 2014.
^ abRoth BL, Driscol J. "PDSP Ki Database". Psychoactive Drug Screening Program (PDSP). University of North Carolina at Chapel Hill and the United States National Institute of Mental Health. Archived from the original on 14 November 2022. Retrieved 14 August 2017.
^ abcdefghijkMillan MJ, Dekeyne A, Newman-Tancredi A, Cussac D, Audinot V, Milligan G, et al. (December 2000). "S18616, a highly potent, spiroimidazoline agonist at alpha(2)-adrenoceptors: I. Receptor profile, antinociceptive and hypothermic actions in comparison with dexmedetomidine and clonidine". The Journal of Pharmacology and Experimental Therapeutics. 295 (3): 1192–1205. PMID11082457.
^Matsumoto I, Combs MR, Jones DJ (February 1992). "Characterization of 5-hydroxytryptamine1B receptors in rat spinal cord via [125I]iodocyanopindolol binding and inhibition of [3H]-5-hydroxytryptamine release". The Journal of Pharmacology and Experimental Therapeutics. 260 (2): 614–626. PMID1738111.
^ abcJasper JR, Lesnick JD, Chang LK, Yamanishi SS, Chang TK, Hsu SA, et al. (April 1998). "Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S]GTPgammaS binding". Biochemical Pharmacology. 55 (7): 1035–1043. doi:10.1016/s0006-2952(97)00631-x. PMID9605427.
^Neve KA, Henningsen RA, Kinzie JM, De Paulis T, Schmidt DE, Kessler RM, et al. (March 1990). "Sodium-dependent isomerization of dopamine D-2 receptors characterized using [125I]epidepride, a high-affinity substituted benzamide ligand". The Journal of Pharmacology and Experimental Therapeutics. 252 (3): 1108–1116. PMID2138666.
^Kenakin T (2009). "Ligand-Receptor Binding and Tissue Response". In Hacker M, Messer W, Bachmann K (eds.). Pharmacology. Elsevier. p. 65. ISBN9780123695215.
^Molderings GJ, Donecker K, Burian M, Simon WA, Schröder DW, Göthert M (April 1998). "Characterization of I2 imidazoline and sigma binding sites in the rat and human stomach". The Journal of Pharmacology and Experimental Therapeutics. 285 (1): 170–177. doi:10.1016/S0022-3565(24)37390-2. PMID9536007.
^Reis DJ, Piletz JE (1997). "The imidazoline receptor in control of blood pressure by clonidine and drugs". American Journal of Physiology. 273 (5): R1569 –R1571. doi:10.1152/ajpregu.1997.273.5.R1569. PMID9374795.
^"Catapres- clonidine hydrochloride tablet". DailyMed. 6 September 2016. Archived from the original on 4 August 2020. Retrieved 21 December 2019. The antihypertensive effect is reached at plasma concentrations between about 0.2 and 2.0 ng/mL in patients with normal excretory function. A further rise in the plasma levels will not enhance the antihypertensive effect.
^"Growth Hormone Test". www.cincinnatichildrens.org. Cincinnati Children's Hospital Medical Center. Archived from the original on 14 October 2018. Retrieved 13 October 2018.
^Skingle M, Hayes AG, Tyers MB (September 1982). "Antinociceptive activity of clonidine in the mouse, rat and dog". Life Sciences. 31 (11): 1123–1132. doi:10.1016/0024-3205(82)90086-8. PMID6128647.
^Dollery CT, Davies DS, Draffan GH, Dargie HJ, Dean CR, Reid JL, et al. (January 1976). "Clinical pharmacology and pharmacokinetics of clonidine". Clinical Pharmacology and Therapeutics. 19 (1): 11–17. doi:10.1002/cpt197619111. PMID1245090. S2CID39473828.
^Keränen A, Nykänen S, Taskinen J (May 1978). "Pharmacokinetics and side-effects of clonidine". European Journal of Clinical Pharmacology. 13 (2): 97–101. doi:10.1007/BF00609752. PMID658114. S2CID24702183.
^Stähle H (June 2000). "A historical perspective: development of clonidine". Best Practice & Research Clinical Anaesthesiology. 14 (2): 237–246. doi:10.1053/bean.2000.0079.