Share to: share facebook share twitter share wa share telegram print page

Criss-cross algorithm

A three-dimensional cube
The criss-cross algorithm visits all 8 corners of the Klee–Minty cube in the worst case. It visits 3 additional corners on average. The Klee–Minty cube is a perturbation of the cube shown here.

In mathematical optimization, the criss-cross algorithm is any of a family of algorithms for linear programming. Variants of the criss-cross algorithm also solve more general problems with linear inequality constraints and nonlinear objective functions; there are criss-cross algorithms for linear-fractional programming problems,[1][2] quadratic-programming problems, and linear complementarity problems.[3]

Like the simplex algorithm of George B. Dantzig, the criss-cross algorithm is not a polynomial-time algorithm for linear programming. Both algorithms visit all 2D corners of a (perturbed) cube in dimension D, the Klee–Minty cube (after Victor Klee and George J. Minty), in the worst case.[4][5] However, when it is started at a random corner, the criss-cross algorithm on average visits only D additional corners.[6][7][8] Thus, for the three-dimensional cube, the algorithm visits all 8 corners in the worst case and exactly 3 additional corners on average.

History

The criss-cross algorithm was published independently by Tamas Terlaky[9] and by Zhe-Min Wang;[10] related algorithms appeared in unpublished reports by other authors.[3]

Comparison with the simplex algorithm for linear optimization

In its second phase, the simplex algorithm crawls along the edges of the polytope until it finally reaches an optimum vertex. The criss-cross algorithm considers bases that are not associated with vertices, so that some iterates can be in the interior of the feasible region, like interior-point algorithms; the criss-cross algorithm can also have infeasible iterates outside the feasible region.

In linear programming, the criss-cross algorithm pivots between a sequence of bases but differs from the simplex algorithm. The simplex algorithm first finds a (primal-) feasible basis by solving a "phase-one problem"; in "phase two", the simplex algorithm pivots between a sequence of basic feasible solutions so that the objective function is non-decreasing with each pivot, terminating with an optimal solution (also finally finding a "dual feasible" solution).[3][11]

The criss-cross algorithm is simpler than the simplex algorithm, because the criss-cross algorithm only has one phase. Its pivoting rules are similar to the least-index pivoting rule of Bland.[12] Bland's rule uses only signs of coefficients rather than their (real-number) order when deciding eligible pivots. Bland's rule selects an entering variables by comparing values of reduced costs, using the real-number ordering of the eligible pivots.[12][13] Unlike Bland's rule, the criss-cross algorithm is "purely combinatorial", selecting an entering variable and a leaving variable by considering only the signs of coefficients rather than their real-number ordering.[3][11] The criss-cross algorithm has been applied to furnish constructive proofs of basic results in linear algebra, such as the lemma of Farkas.[14]

While most simplex variants are monotonic in the objective (strictly in the non-degenerate case), most variants of the criss-cross algorithm lack a monotone merit function which can be a disadvantage in practice.

Description

The criss-cross algorithm works on a standard pivot tableau (or on-the-fly calculated parts of a tableau, if implemented like the revised simplex method). In a general step, if the tableau is primal or dual infeasible, it selects one of the infeasible rows / columns as the pivot row / column using an index selection rule. An important property is that the selection is made on the union of the infeasible indices and the standard version of the algorithm does not distinguish column and row indices (that is, the column indices basic in the rows). If a row is selected then the algorithm uses the index selection rule to identify a position to a dual type pivot, while if a column is selected then it uses the index selection rule to find a row position and carries out a primal type pivot.

Computational complexity: Worst and average cases

The time complexity of an algorithm counts the number of arithmetic operations sufficient for the algorithm to solve the problem. For example, Gaussian elimination requires on the order of D3 operations, and so it is said to have polynomial time-complexity, because its complexity is bounded by a cubic polynomial. There are examples of algorithms that do not have polynomial-time complexity. For example, a generalization of Gaussian elimination called Buchberger's algorithm has for its complexity an exponential function of the problem data (the degree of the polynomials and the number of variables of the multivariate polynomials). Because exponential functions eventually grow much faster than polynomial functions, an exponential complexity implies that an algorithm has slow performance on large problems.

Several algorithms for linear programming—Khachiyan's ellipsoidal algorithm, Karmarkar's projective algorithm, and central-path algorithms—have polynomial time-complexity (in the worst case and thus on average). The ellipsoidal and projective algorithms were published before the criss-cross algorithm.

However, like the simplex algorithm of Dantzig, the criss-cross algorithm is not a polynomial-time algorithm for linear programming. Terlaky's criss-cross algorithm visits all the 2D corners of a (perturbed) cube in dimension D, according to a paper of Roos; Roos's paper modifies the Klee–Minty construction of a cube on which the simplex algorithm takes 2D steps.[3][4][5] Like the simplex algorithm, the criss-cross algorithm visits all 8 corners of the three-dimensional cube in the worst case.

When it is initialized at a random corner of the cube, the criss-cross algorithm visits only D additional corners, however, according to a 1994 paper by Fukuda and Namiki.[6][7] Trivially, the simplex algorithm takes on average D steps for a cube.[8][15] Like the simplex algorithm, the criss-cross algorithm visits exactly 3 additional corners of the three-dimensional cube on average.

Variants

The criss-cross algorithm has been extended to solve more general problems than linear programming problems.

Other optimization problems with linear constraints

There are variants of the criss-cross algorithm for linear programming, for quadratic programming, and for the linear-complementarity problem with "sufficient matrices";[3][6][16][17][18][19] conversely, for linear complementarity problems, the criss-cross algorithm terminates finitely only if the matrix is a sufficient matrix.[18][19] A sufficient matrix is a generalization both of a positive-definite matrix and of a P-matrix, whose principal minors are each positive.[18][19][20] The criss-cross algorithm has been adapted also for linear-fractional programming.[1][2]

Vertex enumeration

The criss-cross algorithm was used in an algorithm for enumerating all the vertices of a polytope, which was published by David Avis and Komei Fukuda in 1992.[21] Avis and Fukuda presented an algorithm which finds the v vertices of a polyhedron defined by a nondegenerate system of n linear inequalities in D dimensions (or, dually, the v facets of the convex hull of n points in D dimensions, where each facet contains exactly D given points) in time O(nDv) and O(nD) space.[22]

Oriented matroids

The max-flow min-cut theorem states that the maximum flow through a network is exactly the capacity of its minimum cut. This theorem can be proved using the criss-cross algorithm for oriented matroids.

The criss-cross algorithm is often studied using the theory of oriented matroids (OMs), which is a combinatorial abstraction of linear-optimization theory.[17][23] Indeed, Bland's pivoting rule was based on his previous papers on oriented-matroid theory. However, Bland's rule exhibits cycling on some oriented-matroid linear-programming problems.[17] The first purely combinatorial algorithm for linear programming was devised by Michael J. Todd.[17][24] Todd's algorithm was developed not only for linear-programming in the setting of oriented matroids, but also for quadratic-programming problems and linear-complementarity problems.[17][24] Todd's algorithm is complicated even to state, unfortunately, and its finite-convergence proofs are somewhat complicated.[17]

The criss-cross algorithm and its proof of finite termination can be simply stated and readily extend the setting of oriented matroids. The algorithm can be further simplified for linear feasibility problems, that is for linear systems with nonnegative variables; these problems can be formulated for oriented matroids.[14] The criss-cross algorithm has been adapted for problems that are more complicated than linear programming: There are oriented-matroid variants also for the quadratic-programming problem and for the linear-complementarity problem.[3][16][17]

Summary

The criss-cross algorithm is a simply stated algorithm for linear programming. It was the second fully combinatorial algorithm for linear programming. The partially combinatorial simplex algorithm of Bland cycles on some (nonrealizable) oriented matroids. The first fully combinatorial algorithm was published by Todd, and it is also like the simplex algorithm in that it preserves feasibility after the first feasible basis is generated; however, Todd's rule is complicated. The criss-cross algorithm is not a simplex-like algorithm, because it need not maintain feasibility. The criss-cross algorithm does not have polynomial time-complexity, however.

Researchers have extended the criss-cross algorithm for many optimization-problems, including linear-fractional programming. The criss-cross algorithm can solve quadratic programming problems and linear complementarity problems, even in the setting of oriented matroids. Even when generalized, the criss-cross algorithm remains simply stated.

See also

  • Jack Edmonds (pioneer of combinatorial optimization and oriented-matroid theorist; doctoral advisor of Komei Fukuda)

Notes

  1. ^ a b Illés, Szirmai & Terlaky (1999)
  2. ^ a b Stancu-Minasian, I. M. (August 2006). "A sixth bibliography of fractional programming". Optimization. 55 (4): 405–428. doi:10.1080/02331930600819613. MR 2258634. S2CID 62199788.
  3. ^ a b c d e f g Fukuda & Terlaky (1997)
  4. ^ a b Roos (1990)
  5. ^ a b Klee, Victor; Minty, George J. (1972). "How good is the simplex algorithm?". In Shisha, Oved (ed.). Inequalities III (Proceedings of the Third Symposium on Inequalities held at the University of California, Los Angeles, Calif., September 1–9, 1969, dedicated to the memory of Theodore S. Motzkin). New York-London: Academic Press. pp. 159–175. MR 0332165.
  6. ^ a b c Fukuda & Terlaky (1997, p. 385)
  7. ^ a b Fukuda & Namiki (1994, p. 367)
  8. ^ a b The simplex algorithm takes on average D steps for a cube. Borgwardt (1987): Borgwardt, Karl-Heinz (1987). The simplex method: A probabilistic analysis. Algorithms and Combinatorics (Study and Research Texts). Vol. 1. Berlin: Springer-Verlag. pp. xii+268. ISBN 978-3-540-17096-9. MR 0868467.
  9. ^ Terlaky (1985) and Terlaky (1987)
  10. ^ Wang (1987)
  11. ^ a b Terlaky & Zhang (1993)
  12. ^ a b Bland, Robert G. (May 1977). "New finite pivoting rules for the simplex method". Mathematics of Operations Research. 2 (2): 103–107. doi:10.1287/moor.2.2.103. JSTOR 3689647. MR 0459599.
  13. ^ Bland's rule is also related to an earlier least-index rule, which was proposed by Katta G. Murty for the linear complementarity problem, according to Fukuda & Namiki (1994).
  14. ^ a b Klafszky & Terlaky (1991)
  15. ^ More generally, for the simplex algorithm, the expected number of steps is proportional to D for linear-programming problems that are randomly drawn from the Euclidean unit sphere, as proved by Borgwardt and by Smale.
  16. ^ a b Fukuda & Namiki (1994)
  17. ^ a b c d e f g Björner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, Günter (1999). "10 Linear programming". Oriented Matroids. Cambridge University Press. pp. 417–479. doi:10.1017/CBO9780511586507. ISBN 978-0-521-77750-6. MR 1744046.
  18. ^ a b c den Hertog, D.; Roos, C.; Terlaky, T. (1 July 1993). "The linear complementarity problem, sufficient matrices, and the criss-cross method" (PDF). Linear Algebra and Its Applications. 187: 1–14. doi:10.1016/0024-3795(93)90124-7.
  19. ^ a b c Csizmadia, Zsolt; Illés, Tibor (2006). "New criss-cross type algorithms for linear complementarity problems with sufficient matrices" (PDF). Optimization Methods and Software. 21 (2): 247–266. doi:10.1080/10556780500095009. MR 2195759. S2CID 24418835. Archived from the original (pdf) on 23 September 2015. Retrieved 30 August 2011.
  20. ^ Cottle, R. W.; Pang, J.-S.; Venkateswaran, V. (March–April 1989). "Sufficient matrices and the linear complementarity problem". Linear Algebra and Its Applications. 114–115: 231–249. doi:10.1016/0024-3795(89)90463-1. MR 0986877.
  21. ^ Avis & Fukuda (1992, p. 297)
  22. ^ The v vertices in a simple arrangement of n hyperplanes in D dimensions can be found in O(n2Dv) time and O(nD) space complexity.
  23. ^ The theory of oriented matroids was initiated by R. Tyrrell Rockafellar. (Rockafellar 1969):

    Rockafellar, R. T. (1969). "The elementary vectors of a subspace of (1967)" (PDF). In R. C. Bose and T. A. Dowling (ed.). Combinatorial Mathematics and its Applications. The University of North Carolina Monograph Series in Probability and Statistics. Chapel Hill, North Carolina: University of North Carolina Press. pp. 104–127. MR 0278972. PDF reprint.

    Rockafellar was influenced by the earlier studies of Albert W. Tucker and George J. Minty. Tucker and Minty had studied the sign patterns of the matrices arising through the pivoting operations of Dantzig's simplex algorithm.

  24. ^ a b Todd, Michael J. (1985). "Linear and quadratic programming in oriented matroids". Journal of Combinatorial Theory. Series B. 39 (2): 105–133. doi:10.1016/0095-8956(85)90042-5. MR 0811116.

References

Read other articles:

D-Crunch디크런치Informasi latar belakangAsalSeoul, Korea SelatanGenreK-popTahun aktif2018 (2018)–2022 (2022)LabelAll-S CompanyMantan anggota Hyunwook Hyunho O.V Minhyuk Hyunwoo Hyunoh Chanyoung Jungseung Dylan D-Crunch (Hangul: 디크런치) adalah grup vokal pria asal Korea Selatan yang dibentuk oleh All-S Company di Seoul, Korea Selatan.[1] Grup ini debut pada tanggal 6 Agustus 2018 dengan 0806 dan bubar pada tanggal 9 November 2022.[2] Mantan Anggota Hyunwook (…

Artikel ini sebatang kara, artinya tidak ada artikel lain yang memiliki pranala balik ke halaman ini.Bantulah menambah pranala ke artikel ini dari artikel yang berhubungan atau coba peralatan pencari pranala.Tag ini diberikan pada November 2022. Jin HutanSutradaraJeffery WongProduserSatheesh Jeffry WongPemeranJeffry WongZami IsmailOpie ZamiTanggal rilis12 Maret 2009Durasi100 menitNegaraMalaysiaBahasaMalaysiaAnggaran0.63 juta[1] Jin Hutan adalah sebuah film horor yang disutradarai oleh Je…

Dompet lipat tiga dengan saku untuk uang kertas dan kartu, serta wadah transparan untuk menampilkan kartu identitas Dompet adalah kotak atau kantong datar yang dapat digunakan untuk membawa barang-barang pribadi kecil seperti mata uang, kartu kredit, dan dokumen identifikasi (SIM, kartu identitas, kartu klub, dll.).[1] Dompet juga terkadang digunakan untuk menyimpan foto, kartu transit, kartu nama dan kertas lain atau kartu laminasi. Dompet umumnya terbuat dari kulit atau kain, dan biasa…

Katedral VarapuzhaKatedral Basilika Bunda Maria dari Gunung Karmel dan Santo Yosef di VarapuzhaKatedral VarapuzhaLokasiVarapuzhaNegaraIndiaDenominasiGereja Katolik RomaArsitekturStatusBasilika minorStatus fungsionalAktifAdministrasiKeuskupanKeuskupan Agung Verapoly Basilika Bunda Maria dari Gunung Karmel dan Santo Yosef, yang dikenal sebagai Basilika Varapuzha adalah sebuah gereja basilika minor Katolik dan bekas katedral yang terletak di Varapuzha, sebuah kota pinggiran utara Kota Kochi di Dist…

Anggoro SupraptoLahir17 Agustus 1962 (umur 61)Pati, Jawa TengahPekerjaanNovelis cerpenis penyair wartawanTahun aktif1979 - sekarang Anggoro Suprapto (lahir 17 Agustus 1962) adalah sastrawan berkebangsaan Indonesia. Namanya dikenal secara luas melalui karya-karyanya berupa cerita pendek, novel, dan puisi yang dipublikasikan di berbagai media massa sejak tahun 1979 antara lain di Suara Merdeka, Majalah Kartini, Swadesi, Buana Minggu, Mingguan Bahari, Majalah Krida, Harian Kartika, dan Ko…

Ini adalah nama Korea; marganya adalah Cho. Cho Yong Pil조용필, 趙容弼Cho Yong-pil pada bulan April 2013Informasi latar belakangLahir21 Maret 1950 (umur 74)Hwaseong, Korea SelatanGenreK-rock, K-pop, trot, new wave, Rock, Balada, Elektronika, Hip hop, Pop, Musik klasik, Opera, Country and western, Musik tradisional Korea, Folk, Blues, Dance-Pop, Synthpop, Jazz, Musik anak, Rap, Rock progresif, Musik kontemporer dewasa, Folk Rock, Disko, Funk, Soft Rock, Dance, Soul, R&B, Pop Rock, …

Dewan Perwakilan DaerahRepublik IndonesiaPeriode 2019–2024JenisJenisMajelis Tinggi PimpinanKetuaLa Nyalla Mattalitti (Jawa Timur) sejak 2 Oktober 2019 Wakil KetuaNono Sampono (Maluku) sejak 2 Oktober 2019 Wakil KetuaMahyudin (Kalimantan Timur) sejak 2 Oktober 2019 Wakil KetuaSultan Bachtiar Najamudin (Bengkulu) sejak 2 Oktober 2019 KomposisiAnggota136Partai & kursi  Nonpartisan (136)PemilihanPemilihan terakhir17 April 2019Pemilihan berikutnya14 Februari 2024Tempat…

Questa voce sull'argomento centri abitati dell'Ohio è solo un abbozzo. Contribuisci a migliorarla secondo le convenzioni di Wikipedia. Segui i suggerimenti del progetto di riferimento. Warrensville Heightscity(EN) Warrensville Heights, Ohio Warrensville Heights – Veduta LocalizzazioneStato Stati Uniti Stato federato Ohio ConteaCuyahoga AmministrazioneSindacoClinton Hall (D) TerritorioCoordinate41°26′19″N 81°31′24″W / 41.438611°N 81.523333°W41.438611; …

Office in Johannesburg, South AfricaAbsa TowerGeneral informationStatusCompletedTypeOfficeArchitectural styleModernLocationJohannesburg, South AfricaAddress160 Main StreetCoordinates26°12′19″S 28°02′59″E / 26.20535°S 28.04980°E / -26.20535; 28.04980Completed1970Opening1970OwnerAbsa Group LimitedHeightArchitectural140 metres (460 ft)Tip140 metres (460 ft)Roof140 metres (460 ft)Technical detailsFloor count31References[1][2][3&#…

VanvesNegaraPrancisArondisemenAntonyAntarkomuneCommunautéd'agglomérationArc de Seine Vanves merupakan sebuah komune di pinggiran baratdaya Paris, Prancis. Terletak 5.6 km (3.5 mil) dari pusat kota Paris. Merupakan salah satu kotamadya terpadat di Eropa. Sejarah Tanggal 1 Januari 1860, kota Paris diperluas dengan menganeksasi komune sekitarnya. Hasilnya, sekitar sepertiga komune Vanves diduduki Paris, dan sekarang membentuk wilayah Plaisance, di arondisemen ke-14 Paris. Tanggal 8 November …

For related races, see 1920 United States gubernatorial elections. 1920 Delaware gubernatorial election ← 1916 November 2, 1920 1924 →   Nominee William D. Denney Andrew J. Lynch Party Republican Democratic Popular vote 52,200 40,823 Percentage 55.50% 43.41% Governor before election John G. Townsend Jr. Republican Elected Governor William D. Denney Republican Elections in Delaware Federal government Presidential elections 1788-89 1792 1796 1800 1804 1808 1812 1816…

This article is largely based on an article in the out-of-copyright Encyclopædia Britannica Eleventh Edition, which was produced in 1911. It should be brought up to date to reflect subsequent history or scholarship (including the references, if any). When you have completed the review, replace this notice with a simple note on this article's talk page. (May 2021) Tubes and primers are used to ignite the propellant in projectile weapons. In ancient times various devices were adopted to ignite th…

Brazilian artistic gymnast Laís SouzaSouza in 2016Personal informationFull nameLais da Silva SouzaCountry represented BrazilBorn (1988-12-13) December 13, 1988 (age 35)Ribeirão Preto, São Paulo, BrazilHeight156 cm (5 ft 1 in)[1]Weight47 kg (104 lb)DisciplineWomen's artistic gymnasticsLevelSenior internationalClubEsporte Clube PinheirosHead coach(es)Oleg OstapenkoChoreographerNadejda OstapenkoRetired2013 Medal record Representing  Brazil Art…

Rohit KhandelwalLahirRohit Khandelwal19 Agustus 1989 (umur 34)Hyderabad, Telangana, India[1]AlmamaterAurora Degree College[2]PekerjaanModel, AktorTahun aktif2012–kiniGelarMr India 2015Mister World 2016Pemenang kontes kecantikanKompetisiutamaMister World 2016(Juara) (Mister World Asia & Oceania)(Mister World Multimedia)Mr India 2015(Juara) Rohit Khandelwal (lahir pada tanggal 19 Agustus 1989) adalah model aktor yang berasal dari India. Ia juga pemenang kontes Miste…

يفتقر محتوى هذه المقالة إلى الاستشهاد بمصادر. فضلاً، ساهم في تطوير هذه المقالة من خلال إضافة مصادر موثوق بها. أي معلومات غير موثقة يمكن التشكيك بها وإزالتها. (ديسمبر 2018) 2009 في المملكة المتحدةمعلومات عامةالسنة 2009 2008 في المملكة المتحدة 2010 في المملكة المتحدة تعديل - تعديل مصدري -…

Daftar acara permainan Indonesia adalah daftar acara-acara kuis dan/atau permainan yang pernah/sedang ditayangkan di televisi Indonesia. Daftar isi 0–9 A B C D E F G H J K L M O P Q R S T U V W Y Referensi 0–9 Judul Pembawa acara Stasiun TV Awal tayang Akhir tayang 1 Huruf Dong Denny Chandra ANTV 12 Agustus 2002 1 Agustus 2003 1 Lawan 100[1] Anjasmara Indosiar 13 September 2010 25 November 2010 12 Desember 2010 20 Februari 2011 5 April 2011 29 April 2011 24 Hour Quiz Helmy Yahya, et.…

German Greco-Roman wrestler Mirko EnglichPersonal informationBorn (1978-08-28) 28 August 1978 (age 45)Witten, West GermanyHeight1.85 m (6 ft 1 in)Weight102 kg (225 lb)SportSportWrestlingEventGreco-RomanClub1. SC LuckenwaldeLuckenwalde RSV Hansa 90Frankfurt OderCoached byJoern LevermannMaik Bullmann Medal record Men's Greco-Roman wrestling Representing  Germany Olympic Games 2008 Beijing 96 kg European Championships 2003 Aschaffenburg 96 kg 2008 Tamper…

日本 > 兵庫県 > 神戸市 > 灘区 > 新在家南町 新在家南町(しんざいけみなみまち)は兵庫県神戸市灘区の町名の一つで、同区東部旧・新在家村域の南部(国道43号および阪神高速道路3号神戸線以南)に相当する。 地理 東は浜田町と、南から南東は運河を隔て神戸東部第一工区の灘浜東町と、西は都賀川を隔て大石南町と、北西の一点で大石北町と、…

1910–1945 colony of the Empire of Japan Korea朝鮮Chōsen조선Chosŏn1910–1945 Flag Seal of theGovernment-Generalof Chōsen Anthem: Kimigayo1945 National Geographic map of Korea, showing Japanese placenames and provincial boundariesStatusPart of the Empire of Japan (colony)Capitaland largest city Keijō (Gyeongseong)a(now Seoul, South Korea)Official languagesJapaneseKoreanReligion De jure: None[1][2][3][4]De facto: State ShintoConfucianismBuddhismS…

1968 studio album by Richard Groove HolmesThe Groover!Studio album by Richard Groove HolmesReleased1968RecordedFebruary 14, 1968StudioVan Gelder Studio, Englewood Cliffs, New JerseyGenreJazzLength36:22LabelPrestigePR 7570ProducerCal LampleyRichard Groove Holmes chronology Soul Power!(1967) The Groover!(1968) That Healin' Feelin'(1968) The Groover! is an album by jazz organist Richard Groove Holmes which was recorded in 1968 and released on the Prestige label.[1] Reception Profess…

Kembali kehalaman sebelumnya