The substances resulting from glucuronidation are known as glucuronides (or glucuronosides) and are typically much more water-soluble than the non-glucuronic acid-containing substances from which they were originally synthesised. The human body uses glucuronidation to make a large variety of substances more water-soluble, and, in this way, allow for their subsequent elimination from the body through urine or feces (via bile from the liver). Hormones are glucuronidated to allow for easier transport around the body. Pharmacologists have linked drugs to glucuronic acid to allow for more effective delivery of a broad range of potential therapeutics. Sometimes toxic substances are also less toxic after glucuronidation.
The conjugation of xenobiotic molecules with hydrophilic molecular species such as glucuronic acid is known as phase II metabolism.
Various factors affect the rate of glucuronidation, which in turn will affect these molecules' clearance from the body. Generally, an increased rate of glucuronidation results in a loss of potency for the target drugs or compounds.
No change found for paracetamol, oxazepam, temazepam, or propranolol. Decreased clearance found for codeine-6-glucuronide, and decreased unbound clearance for oxazepam in the very elderly.
Sex
Females
↓
Clearance higher in males for paracetamol, oxazepam, temazepam, and propranolol. Possible additive role with CYP1A2 resulting in higher clozapine and olanzapine concentrations in females
Males
↑
Body habitus
Overweight
↑
Clearance of lorazepam, oxazepam, temazepam, and paracetamol likely the result of an increase in liver size and quantity of enzyme
Propranolol, oxazepam, lorazepam, paracetamol. Possible additive role with CYP1A2 induction causing decreased clozapine and olanzapine concentration.
Affected drugs
Many drugs which are substrates for glucuronidation as part of their metabolism are significantly affected by inhibitors or inducers of their specific glucuronisyltransferase types:
^Al-Zoughool M., Talaska, G. (2006). "4-Aminobiphenyl N-glucuronidation by liver microsomes: optimization of the reaction conditions and characterization of the UDP-glucoronosyltransferase isoforms". J. Appl. Toxicol. 26 (6): 524–532. doi:10.1002/jat.1172. PMID17080401. S2CID19782863.{{cite journal}}: CS1 maint: multiple names: authors list (link)
^Bock K, Köhle C (2005). "UDP-Glucuronosyltransferase 1A6: Structural, Functional, and Regulatory Aspects". Phase II Conjugation Enzymes and Transport Systems. Methods in Enzymology. Vol. 400. pp. 57–75. doi:10.1016/S0076-6879(05)00004-2. ISBN978-0-12-182805-9. PMID16399343.
^ abcdUnless else specified in boxes, then reference is: Liston H, Markowitz J, Devane C (2001). "Drug glucuronidation in clinical psychopharmacology". Journal of Clinical Psychopharmacology. 21 (5): 500–515. doi:10.1097/00004714-200110000-00008. PMID11593076. S2CID6068811.