He has published important works on the generation of non-classical states of the quantized electromagnetic[1] field and in trapped ions.[2] He has also studied analogies between classical and quantum systems in waveguide arrays and with coworkers has experimentally shown how to perform the discrete Fourier transform (DFT) in these types of systems.[3] Using this he has shown that precisely the DFT of a number operator in an s-dimensional Hilbert space corresponds to the best definition of a phase operator[4] in quantum optics: the Pegg and Barnett [5] phase operator.
In Optics he has shown that the Bohm potential can be used to explain the Gouy phase.[6] He has also shown that a GRIN medium, when studied beyond the paraxial approximation, generates an analogy with a quantum Kerr medium.[7] By being able to generate non-classical states such as Schrödinger's cats (superposition of coherent states), the separation of a Gaussian beam can be generated in this way without the use of beam splitters.
Soto-Eguibar, Francisco; Villegas-Martínez, Braulio Misael; Moya-Cessa, Héctor Manuel (2024). The Matrix Perturbation Method in Quantum Mechanics. Springer. ISBN978-3-031-48545-9.
Hernández-Sánchez, Leonardi; Ramos-Prieto, Irán; Soto-Eguibar, Francisco; Moya-Cessa, Héctor Manuel (2023). Formas de línea atómicas en modelos de tipo Jaynes-Cummings. Editorial Académica Española. ISBN978-620-2-15886-2.
Martínez-Carranza, Juan; Moya-Cessa, Héctor Manuel; Soto-Eguibar, Francisco (2012). La teoría de perturbaciones en la mecánica cuántica [The theory of perturbations in quantum mechanics] (in Spanish). ISBN978-3-8473-6599-0.
Manuel, Hector; Moya-cessa, Hector Manuel; Soto, Eguibar; Soto-eguibar, Francisco (2011). Introduction to Quantum Optics. Rinton. ISBN978-1-58949-061-1.
Moya-Cessa, Héctor Manuel; Soto-Eguibar, Francisco (2011). Differential Equations: An Operational Approach. Rinton. ISBN978-1-58949-060-4.