Share to: share facebook share twitter share wa share telegram print page

Isotoxal figure

In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal (from Greek τόξον  'arc') or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two edges, there is a translation, rotation, and/or reflection that will move one edge to the other while leaving the region occupied by the object unchanged.

Isotoxal polygons

An isotoxal polygon is an even-sided i.e. equilateral polygon, but not all equilateral polygons are isotoxal. The duals of isotoxal polygons are isogonal polygons. Isotoxal -gons are centrally symmetric, thus are also zonogons.

In general, a (non-regular) isotoxal -gon has dihedral symmetry. For example, a (non-square) rhombus is an isotoxal "×-gon" (quadrilateral) with symmetry. All regular -gons (also with odd ) are isotoxal, having double the minimum symmetry order: a regular -gon has dihedral symmetry.

An isotoxal -gon with outer internal angle can be denoted by The inner internal angle may be less or greater than making convex or concave polygons respectively.

A star -gon can also be isotoxal, denoted by with and with the greatest common divisor where is the turning number or density.[1] Concave inner vertices can be defined for If then is "reduced" to a compound of rotated copies of

Caution:

The vertices of are not always placed like those of whereas the vertices of the regular are placed like those of the regular

A set of "uniform" tilings, actually isogonal tilings using isotoxal polygons as less symmetric faces than regular ones, can be defined.

Examples of non-regular isotoxal polygons and compounds
Number of sides: 2×2
(Cent. sym.)
2×3 2×4
(Cent. sym.)
2×5 2×6
(Cent. sym.)
2×7 2×8
(Cent. sym.)

Convex:

Concave:







2-turn
--





3-turn
-- --




4-turn
-- -- --



5-turn
-- -- -- --


6-turn
-- -- -- -- --

7-turn
-- -- -- -- -- --

Isotoxal polyhedra and tilings

Regular polyhedra are isohedral (face-transitive), isogonal (vertex-transitive), and isotoxal (edge-transitive).

Quasiregular polyhedra, like the cuboctahedron and the icosidodecahedron, are isogonal and isotoxal, but not isohedral. Their duals, including the rhombic dodecahedron and the rhombic triacontahedron, are isohedral and isotoxal, but not isogonal.

Examples
Quasiregular
polyhedron
Quasiregular dual
polyhedron
Quasiregular
star polyhedron
Quasiregular dual
star polyhedron
Quasiregular
tiling
Quasiregular dual
tiling

A cuboctahedron is an isogonal and isotoxal polyhedron

A rhombic dodecahedron is an isohedral and isotoxal polyhedron

A great icosidodecahedron is an isogonal and isotoxal star polyhedron

A great rhombic triacontahedron is an isohedral and isotoxal star polyhedron

The trihexagonal tiling is an isogonal and isotoxal tiling

The rhombille tiling is an isohedral and isotoxal tiling with p6m (*632) symmetry.

Not every polyhedron or 2-dimensional tessellation constructed from regular polygons is isotoxal. For instance, the truncated icosahedron (the familiar soccerball) is not isotoxal, as it has two edge types: hexagon-hexagon and hexagon-pentagon, and it is not possible for a symmetry of the solid to move a hexagon-hexagon edge onto a hexagon-pentagon edge.

An isotoxal polyhedron has the same dihedral angle for all edges.

The dual of a convex polyhedron is also a convex polyhedron.[2]

The dual of a non-convex polyhedron is also a non-convex polyhedron.[2] (By contraposition.)

The dual of an isotoxal polyhedron is also an isotoxal polyhedron. (See the Dual polyhedron article.)

There are nine convex isotoxal polyhedra: the five (regular) Platonic solids, the two (quasiregular) common cores of dual Platonic solids, and their two duals.

There are fourteen non-convex isotoxal polyhedra: the four (regular) Kepler–Poinsot polyhedra, the two (quasiregular) common cores of dual Kepler–Poinsot polyhedra, and their two duals, plus the three quasiregular ditrigonal (3 | p q) star polyhedra, and their three duals.

There are at least five isotoxal polyhedral compounds: the five regular polyhedral compounds; their five duals are also the five regular polyhedral compounds (or one chiral twin).

There are at least five isotoxal polygonal tilings of the Euclidean plane, and infinitely many isotoxal polygonal tilings of the hyperbolic plane, including the Wythoff constructions from the regular hyperbolic tilings {p,q}, and non-right (p q r) groups.

See also

References

  1. ^ Tilings and patterns, Branko Gruenbaum, G. C. Shephard, 1987, 2.5 Tilings using star polygons, pp. 82–85.
  2. ^ a b "duality". maths.ac-noumea.nc. Retrieved 2020-09-30.

Read other articles:

Bayerische Staatsbibliothek Perpustakaan BayernPerpustakaan Bayern di Ludwigstrasse MunichLokasiMunich, Bayern, JermanJenisPerpustakaan UmumDidirikan1558CollectionBarang yang dikoleksi10,363,000Ukuran10.629.764 (2017) Other informationDirekturKlaus CeynowaSitus webwww.bsb-muenchen.de Perpustakaan Bayern (Jerman: Bayerische Staatsbibliothek, disingkat BSB) adalah perpustakaan daerah Bayern dan salah satu perpustakaan Eropa yang terkenal sebagai perpustakaan dengan reputasi internasional.[…

Untuk film, lihat Eowudong (film, 1985). Untuk film, lihat Eowudong (film, 1987). EowudongHangul어우동, 어을우동 Hanja於宇同 atau 於于同, 於乙宇同 Alih Aksaraawoodong, aeulwoodongMcCune–ReischauerEowudong, Eowulwudong Eowudong(어우동 ; 於宇同, 於于同) atau Eoeulwudong(어을우동 ; 於乙宇同), tanggal lahir tidak diketahui - 18 Oktober 1480), adalah seorang kisaeng, penyair, seniman, penulis yang paling terkenal yang hidup pada masa Dinasti Joseon semasa…

Buah sanca Crataegus Fruit of four different species of Crataegus (clockwise from top left: C. coccinea, C. punctata, C. ambigua and C. douglasii)TumbuhanJenis buahpome (en) TaksonomiDivisiTracheophytaSubdivisiSpermatophytesKladAngiospermaeKladmesangiospermsKladeudicotsKladcore eudicotsKladSuperrosidaeKladrosidsKladfabidsOrdoRosalesFamiliRosaceaeSubfamiliMaloideaeGenusCrataegus Linnaeus, 1753 lbs Crataegus ( /krəˈtiːɡəs/ [2] ), biasa disebut hawthorn atau buah sanca (serapan di…

Piala Negara-Negara Afrika 2013Afrikanasiesbeker 2013AFCON 2013CAN 2013Logo Piala Negara-Negara Afrika 2013Informasi turnamenTuan rumah Afrika SelatanJadwalpenyelenggaraan19 Januari s.d. 10 Februari 2013Jumlahtim peserta16 (dari 1 konfederasi)Tempatpenyelenggaraan5 (di 5 kota)Hasil turnamenJuara Nigeria (gelar ke-3)Tempat kedua Burkina FasoTempat ketiga MaliTempat keempat GhanaStatistik turnamenJumlahpertandingan32Jumlah gol69 (2,16 per pertandingan)Jumlah…

Pour les articles homonymes, voir Château de Versailles et Versailles (homonymie). « Versaillais » redirige ici. Pour les autres significations, voir Versaillais (homonymie). Versailles Versailles vue du ciel, avec au centre, son château, ses trois grandes avenues, séparant les deux quartiers historiques de la ville que sont ceux de Notre-Dame et Saint-Louis. Blason Logo Administration Pays France Région Île-de-France Département Yvelines (préfecture) Arrondissement Versailles…

Direct vote to replace an elected official before the end of their term Part of the Politics seriesDirect democracy Referendum types Optional referendum Legislative referral Popular initiative Recall referendum Popular referendum Mandatory referendum Referendums by country Australia Canada Czechia EU France Germany Italy Iran Israel Kenya Lithuania Netherlands New Zealand Poland Philippines Sweden Slovakia Switzerland Turkey Taiwan UK Ukraine USA Referendums by issue Civil rights Finance Mining …

العلاقات التشيلية الغينية تشيلي غينيا   تشيلي   غينيا تعديل مصدري - تعديل   العلاقات التشيلية الغينية هي العلاقات الثنائية التي تجمع بين تشيلي وغينيا.[1][2][3][4][5] مقارنة بين البلدين هذه مقارنة عامة ومرجعية للدولتين: وجه المقارنة تشيلي غينيا ال…

Pour les articles homonymes, voir de Rosnay. Joël de RosnayJoël de Rosnay en 2018.BiographieNaissance 12 juin 1937 (86 ans)CurepipeNationalité françaiseActivités Écrivain, conférencier, surfeur, prospectiviste, informaticien, biologiste, professeur d'universitéPère Gaëtan de RosnayMère Natacha de Rosnay (Kolchina) (d)Fratrie Arnaud de RosnayConjoint Stella Candida Jebb (d) (depuis 1959)Enfants Tatiana de RosnayCecilia Fiona Louise de Rosnay (d)Alexis de Rosnay (d)modifier - modif…

Christoph Baumgartner Baumgartner bersama timnas Austria pada 2019Informasi pribadiNama lengkap Christoph BaumgartnerTanggal lahir 1 Agustus 1999 (umur 24)Tempat lahir Horn, AustriaTinggi 178 cm (5 ft 10 in)Posisi bermain GelandangInformasi klubKlub saat ini 1899 HoffenheimNomor 14Karier junior2005–2012 SV Horn2012–2017 AKA St. Pölten2017–2018 1899 HoffenheimKarier senior*Tahun Tim Tampil (Gol)2018– 1899 Hoffenheim II 14 (5)2019– 1899 Hoffenheim 121 (27)Tim nasiona…

Province della Repubblica Democratica del Congo dal 2015 Le province della Repubblica Democratica del Congo sono la suddivisione di primo livello del Paese. Pari a 26,[1] sono state istituite dall'art. 2 della Costituzione della Repubblica Democratica del Congo, approvata nel febbraio 2006, e sono divenute operative nel 2015, in sostituzione del precedente ordinamento, nato nel 1997, basato su 11 province. Indice 1 Lista 2 Province 1997-2015 3 Note 4 Altri progetti Lista Localizzazione P…

كاس تشيلى 2019 البلد تشيلى  الرياضه كورة قدم  الموسم 40  تاريخ 2019  تاريخ الانتهاء 15 ديسمبر 2019  عدد المشاركين الفايز كولو-كولو  تعديل  كاس تشيلى 2019 (بالانجليزى: 2019 Copa Chile) هوا موسم رياضى فى كورة قدم اتعمل فى تشيلى سنة 2019. معلومات الموسم كاس تشيلى 2019 هوا الموسم 40. الم…

Meng XiaodongLahir(1908-12-09)9 Desember 1908Kabupaten Shanghai, Dinasti QingMeninggal26 Mei 1977(1977-05-26) (umur 68)Taipei, TaiwanMakamDistrik Shulin, New Taipei City, TaiwanPekerjaanPementas opera PekingDikenal atasPeran sheng tuaGayaMazhab Yu (Yu Shuyan)Suami/istriMei Lanfang ​ ​(m. 1927; bercerai 1933)​ Du Yuesheng ​ ​(m. 1950; bercerai 1951)​ Meng Xiaodong Hanzi: 孟小冬 Alih aksara Mand…

Pour les articles homonymes, voir La Roche. Mary LaRoche Avec Clark Gable, dans L'Odyssée du sous-marin Nerka (1958) Données clés Naissance 20 juillet 1920New YorkÉtat de New York, États-Unis Nationalité Américaine Décès 9 février 1999 (à 78 ans)RochesterÉtat de New York, États-Unis Profession Actrice et chanteuse Films notables GidgetLe Tombeur de ces damesBye Bye Birdie Séries notables Perry MasonLa Quatrième DimensionLes Rues de San Francisco modifier De g. à d. : El…

Figura di Chiara Fancelli in una Madonna del Perugino Chiara Fancelli (Fiesole?, 1470 circa – Firenze, 21 maggio 1541) fu una donna italiana di origini fiorentine, meglio conosciuta per essere stata moglie e modella del pittore di Città della Pieve Perugino. Biografia Chiara Fancelli, la cui data di nascita e il luogo non sono noti con precisione, era la figlia dell'architetto Luca Fancelli. Il 1º settembre 1493 a Fiesole sposò Perugino, con il quale ebbe cinque figli (tre maschi e due femm…

FIBA EuropeLogo Disciplina Pallacanestro Fondazione1957 GiurisdizioneEuropa Federazioni affiliate51 ConfederazioneFIBA (dal 1957) Sede Monaco di Baviera Presidente Jorge Garbajosa Sito ufficialewww.fiba.basketball/europe Modifica dati su Wikidata · Manuale La FIBA Europe è l'organo che governa la pallacanestro in Europa e una delle cinque Zone della Federazione Internazionale Pallacanestro (insieme ad Africa, America, Asia e Oceania). È un'associazione internazionale fondata nei gio…

American college football season 2016 LSU Tigers footballCitrus Bowl championCitrus Bowl, W 29–9 vs. LouisvilleConferenceSoutheastern ConferenceDivisionWestern DivisionRankingCoachesNo. 14APNo. 13Record8–4 (5–3 SEC)Head coachLes Miles (12th season; first 4 games)Ed Orgeron (interim, final 8 games)Offensive coordinatorCam Cameron (4th season, first 4 games)Steve Ensminger (interim)Offensive schemePro-styleDefensive coordinatorDave Aranda (1st season)Base…

ХристианствоБиблия Ветхий Завет Новый Завет Евангелие Десять заповедей Нагорная проповедь Апокрифы Бог, Троица Бог Отец Иисус Христос Святой Дух История христианства Апостолы Хронология христианства Раннее христианство Гностическое христианство Вселенские соборы Ни…

Month of 1926 1926 January February March April May June July August September October November December << October 1926 >> Su Mo Tu We Th Fr Sa 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31   October 31, 1926: Famed magician Harry Houdini dies nine days after being injured The following events occurred in October 1926: Friday, October 1, 1926 English pilot Alan Cobham landed his de Havilland seaplane on the River Thames to complete…

この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方)出典検索?: コルク – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2017年4月) コルクを打ち抜いて作った瓶の栓 コルク(木栓、蘭&…

LupeniKota Lambang kebesaranLetak LupeniNegara RumaniaProvinsiHunedoaraStatusMunisipalitasPemerintahan • Wali kotaCornel ResmeriţăPopulasi (2002) • Total31.409Zona waktuUTC+2 (EET) • Musim panas (DST)UTC+3 (EEST)Situs webhttp://www.lupeni.ro Lupeni (Jerman: Schylwolfsbach, Hungaria: Lupény) adalah kota tambang yang terletak di Lembah Jiu, Provinsi Hunedoara, Rumania, dengan jumlah penduduk sebesar 31.409 jiwa. Kota ini adalah salah satu kota tertu…

Kembali kehalaman sebelumnya