In set theory, a branch of mathematics, the Milner – Rado paradox, found by Eric Charles Milner and Richard Rado (1965), states that every ordinal number
less than the successor
of some cardinal number
can be written as the union of sets
where
is of order type at most κn for n a positive integer.
Proof
The proof is by transfinite induction. Let
be a limit ordinal (the induction is trivial for successor ordinals), and for each
, let
be a partition of
satisfying the requirements of the theorem.
Fix an increasing sequence
cofinal in
with
.
Note
.
Define:
![{\displaystyle X_{0}^{\alpha }=\{0\};\ \ X_{n+1}^{\alpha }=\bigcup _{\gamma }X_{n}^{\beta _{\gamma +1}}\setminus \beta _{\gamma }}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ececd5e0c70a85a1cf2b9aff7e9d05fd3243a1ca)
Observe that:
![{\displaystyle \bigcup _{n>0}X_{n}^{\alpha }=\bigcup _{n}\bigcup _{\gamma }X_{n}^{\beta _{\gamma +1}}\setminus \beta _{\gamma }=\bigcup _{\gamma }\bigcup _{n}X_{n}^{\beta _{\gamma +1}}\setminus \beta _{\gamma }=\bigcup _{\gamma }\beta _{\gamma +1}\setminus \beta _{\gamma }=\alpha \setminus \beta _{0}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b9876f35274a13440d7f5c1b45e56792718acba1)
and so
.
Let
be the order type of
. As for the order types, clearly
.
Noting that the sets
form a consecutive sequence of ordinal intervals, and that each
is a tail segment of
, then:
![{\displaystyle \mathrm {ot} (X_{n+1}^{\alpha })=\sum _{\gamma }\mathrm {ot} (X_{n}^{\beta _{\gamma +1}}\setminus \beta _{\gamma })\leq \sum _{\gamma }\kappa ^{n}=\kappa ^{n}\cdot \mathrm {cf} (\alpha )\leq \kappa ^{n}\cdot \kappa =\kappa ^{n+1}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e1e2e93ac701bf8bbb33a8f344ecae7078bf6854)
References