A univalent function h on the unit disk satisfying h(0) = 0 and h'(0) = 1 is starlike, i.e. has image invariant under multiplication by real numbers in [0,1], if and only if has positive real part for |z| < 1 and takes the value 1 at 0.
Note that, by applying the result to a•h(rz), the criterion applies on any disc |z| < r with only the requirement that f(0) = 0 and f'(0) ≠ 0.
Proof of criterion
Let h(z) be a starlike univalent function on |z| < 1 with h(0) = 0 and h'(0) = 1.
has positive real part and g(0) = 1, then h can vanish only at 0, where it must have a simple zero.
Now
Thus as z traces the circle , the argument of the image increases strictly. By the argument principle, since has a simple zero at 0,
it circles the origin just once. The interior of the region bounded by the curve it traces is therefore starlike. If a is a point in the interior then the number of solutions N(a) of h(z) = a with |z| < r is given by
Since this is an integer, depends continuously on a and N(0) = 1, it is identically 1. So h is univalent and starlike in each disk |z| < r and hence everywhere.
is a holomorphic function on the unit disk D with positive real part, then[2][3]
In fact it suffices to show the result with g
replaced by gr(z) = g(rz) for any r < 1 and then pass to the limit r = 1.
In that case g extends to a continuous function on the closed disc with positive real part and by Schwarz formula
Using the identity
it follows that
,
so defines a probability measure, and
Hence
Proof for starlike functions
Let
be a univalent starlike function in |z| < 1. Nevanlinna (1921) proved that
In fact by Nevanlinna's criterion
has positive real part for |z|<1. So by Carathéodory's lemma
Duren, P. L. (1983), Univalent functions, Grundlehren der Mathematischen Wissenschaften, vol. 259, Springer-Verlag, pp. 41–42, ISBN0-387-90795-5
Hayman, W. K. (1994), Multivalent functions, Cambridge Tracts in Mathematics, vol. 110 (2nd ed.), Cambridge University Press, ISBN0-521-46026-3
Nevanlinna, R. (1921), "Über die konforme Abbildung von Sterngebieten", Ofvers. Finska Vet. Soc. Forh., 53: 1–21
Pommerenke, C. (1975), Univalent functions, with a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher, vol. 15, Vandenhoeck & Ruprecht