Concept in mathematics
The Onsager–Machlup function is a function that summarizes the dynamics of a continuous stochastic process . It is used to define a probability density for a stochastic process, and it is similar to the Lagrangian of a dynamical system . It is named after Lars Onsager and Stefan Machlup [de ] who were the first to consider such probability densities.[ 1]
The dynamics of a continuous stochastic process X from time t = 0 to t = T in one dimension, satisfying a stochastic differential equation
d
X
t
=
b
(
X
t
)
d
t
+
σ
(
X
t
)
d
W
t
{\displaystyle dX_{t}=b(X_{t})\,dt+\sigma (X_{t})\,dW_{t}}
where W is a Wiener process , can in approximation be described by the probability density function of its value xi at a finite number of points in time ti :
p
(
x
1
,
…
,
x
n
)
=
(
∏
i
=
1
n
−
1
1
2
π
σ
(
x
i
)
2
Δ
t
i
)
exp
(
−
∑
i
=
1
n
−
1
L
(
x
i
,
x
i
+
1
−
x
i
Δ
t
i
)
Δ
t
i
)
{\displaystyle p(x_{1},\ldots ,x_{n})=\left(\prod _{i=1}^{n-1}{\frac {1}{\sqrt {2\pi \sigma (x_{i})^{2}\Delta t_{i}}}}\right)\exp \left(-\sum _{i=1}^{n-1}L\left(x_{i},{\frac {x_{i+1}-x_{i}}{\Delta t_{i}}}\right)\,\Delta t_{i}\right)}
where
L
(
x
,
v
)
=
1
2
(
v
−
b
(
x
)
σ
(
x
)
)
2
{\displaystyle L(x,v)={\frac {1}{2}}\left({\frac {v-b(x)}{\sigma (x)}}\right)^{2}}
and Δti = t i +1 − ti > 0 , t 1 = 0 and tn = T . A similar approximation is possible for processes in higher dimensions. The approximation is more accurate for smaller time step sizes Δti , but in the limit Δti → 0 the probability density function becomes ill defined, one reason being that the product of terms
1
2
π
σ
(
x
i
)
2
Δ
t
i
{\displaystyle {\frac {1}{\sqrt {2\pi \sigma (x_{i})^{2}\Delta t_{i}}}}}
diverges to infinity . In order to nevertheless define a density for the continuous stochastic process X , ratios of probabilities of X lying within a small distance ε from smooth curves φ 1 and φ 2 are considered:[ 2]
P
(
|
X
t
−
φ
1
(
t
)
|
≤
ε
for every
t
∈
[
0
,
T
]
)
P
(
|
X
t
−
φ
2
(
t
)
|
≤
ε
for every
t
∈
[
0
,
T
]
)
→
exp
(
−
∫
0
T
L
(
φ
1
(
t
)
,
φ
˙
1
(
t
)
)
d
t
+
∫
0
T
L
(
φ
2
(
t
)
,
φ
˙
2
(
t
)
)
d
t
)
{\displaystyle {\frac {P\left(\left|X_{t}-\varphi _{1}(t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}{P\left(\left|X_{t}-\varphi _{2}(t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}}\to \exp \left(-\int _{0}^{T}L\left(\varphi _{1}(t),{\dot {\varphi }}_{1}(t)\right)\,dt+\int _{0}^{T}L\left(\varphi _{2}(t),{\dot {\varphi }}_{2}(t)\right)\,dt\right)}
as ε → 0 , where L is the Onsager–Machlup function .
Definition
Consider a d -dimensional Riemannian manifold M and a diffusion process X = {Xt : 0 ≤ t ≤ T } on M with infinitesimal generator 1 / 2 ΔM + b , where ΔM is the Laplace–Beltrami operator and b is a vector field . For any two smooth curves φ 1 , φ 2 : [0, T ] → M ,
lim
ε
↓
0
P
(
ρ
(
X
t
,
φ
1
(
t
)
)
≤
ε
for every
t
∈
[
0
,
T
]
)
P
(
ρ
(
X
t
,
φ
2
(
t
)
)
≤
ε
for every
t
∈
[
0
,
T
]
)
=
exp
(
−
∫
0
T
L
(
φ
1
(
t
)
,
φ
˙
1
(
t
)
)
d
t
+
∫
0
T
L
(
φ
2
(
t
)
,
φ
˙
2
(
t
)
)
d
t
)
{\displaystyle \lim _{\varepsilon \downarrow 0}{\frac {P\left(\rho (X_{t},\varphi _{1}(t))\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}{P\left(\rho (X_{t},\varphi _{2}(t))\leq \varepsilon {\text{ for every }}t\in [0,T]\right)}}=\exp \left(-\int _{0}^{T}L\left(\varphi _{1}(t),{\dot {\varphi }}_{1}(t)\right)\,dt+\int _{0}^{T}L\left(\varphi _{2}(t),{\dot {\varphi }}_{2}(t)\right)\,dt\right)}
where ρ is the Riemannian distance ,
φ
˙
1
,
φ
˙
2
{\displaystyle \scriptstyle {\dot {\varphi }}_{1},{\dot {\varphi }}_{2}}
denote the first derivatives of φ 1 , φ 2 , and L is called the Onsager–Machlup function .
The Onsager–Machlup function is given by[ 3] [ 4] [ 5]
L
(
x
,
v
)
=
1
2
‖
v
−
b
(
x
)
‖
x
2
+
1
2
div
b
(
x
)
−
1
12
R
(
x
)
,
{\displaystyle L(x,v)={\tfrac {1}{2}}\|v-b(x)\|_{x}^{2}+{\tfrac {1}{2}}\operatorname {div} \,b(x)-{\tfrac {1}{12}}R(x),}
where || ⋅ ||x is the Riemannian norm in the tangent space Tx (M ) at x , div b (x ) is the divergence of b at x , and R (x ) is the scalar curvature at x .
Examples
The following examples give explicit expressions for the Onsager–Machlup function of a continuous stochastic processes.
Wiener process on the real line
The Onsager–Machlup function of a Wiener process on the real line R is given by[ 6]
L
(
x
,
v
)
=
1
2
|
v
|
2
.
{\displaystyle L(x,v)={\tfrac {1}{2}}|v|^{2}.}
Proof: Let X = {Xt : 0 ≤ t ≤ T } be a Wiener process on R and let φ : [0, T ] → R be a twice differentiable curve such that φ (0) = X 0 . Define another process Xφ = {Xt φ : 0 ≤ t ≤ T } by Xt φ = Xt − φ (t ) and a measure Pφ by
P
φ
=
exp
(
∫
0
T
φ
˙
(
t
)
d
X
t
φ
+
∫
0
T
1
2
|
φ
˙
(
t
)
|
2
d
t
)
d
P
.
{\displaystyle P^{\varphi }=\exp \left(\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}^{\varphi }+\int _{0}^{T}{\tfrac {1}{2}}\left|{\dot {\varphi }}(t)\right|^{2}\,dt\right)\,dP.}
For every ε > 0 , the probability that |Xt − φ (t )| ≤ ε for every t ∈ [0, T ] satisfies
P
(
|
X
t
−
φ
(
t
)
|
≤
ε
for every
t
∈
[
0
,
T
]
)
=
P
(
|
X
t
φ
|
≤
ε
for every
t
∈
[
0
,
T
]
)
=
∫
{
|
X
t
φ
|
≤
ε
for every
t
∈
[
0
,
T
]
}
exp
(
−
∫
0
T
φ
˙
(
t
)
d
X
t
φ
−
∫
0
T
1
2
|
φ
˙
(
t
)
|
2
d
t
)
d
P
φ
.
{\displaystyle {\begin{aligned}P\left(\left|X_{t}-\varphi (t)\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)&=P\left(\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right)\\&=\int _{\left\{\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right\}}\exp \left(-\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}^{\varphi }-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right)\,dP^{\varphi }.\end{aligned}}}
By Girsanov's theorem , the distribution of Xφ under Pφ equals the distribution of X under P , hence the latter can be substituted by the former:
P
(
|
X
t
−
φ
(
t
)
|
≤
ε
for every
t
∈
[
0
,
T
]
)
=
∫
{
|
X
t
φ
|
≤
ε
for every
t
∈
[
0
,
T
]
}
exp
(
−
∫
0
T
φ
˙
(
t
)
d
X
t
−
∫
0
T
1
2
|
φ
˙
(
t
)
|
2
d
t
)
d
P
.
{\displaystyle P(|X_{t}-\varphi (t)|\leq \varepsilon {\text{ for every }}t\in [0,T])=\int _{\left\{\left|X_{t}^{\varphi }\right|\leq \varepsilon {\text{ for every }}t\in [0,T]\right\}}\exp \left(-\int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right)\,dP.}
By Itō's lemma it holds that
∫
0
T
φ
˙
(
t
)
d
X
t
=
φ
˙
(
T
)
X
T
−
∫
0
T
φ
¨
(
t
)
X
t
d
t
,
{\displaystyle \int _{0}^{T}{\dot {\varphi }}(t)\,dX_{t}={\dot {\varphi }}(T)X_{T}-\int _{0}^{T}{\ddot {\varphi }}(t)X_{t}\,dt,}
where
φ
¨
{\displaystyle \scriptstyle {\ddot {\varphi }}}
is the second derivative of φ , and so this term is of order ε on the event where |Xt | ≤ ε for every t ∈ [0, T ] and will disappear in the limit ε → 0 , hence
lim
ε
↓
0
P
(
|
X
t
−
φ
(
t
)
|
≤
ε
for every
t
∈
[
0
,
T
]
)
P
(
|
X
t
|
≤
ε
for every
t
∈
[
0
,
T
]
)
=
exp
(
−
∫
0
T
1
2
|
φ
˙
(
t
)
|
2
d
t
)
.
{\displaystyle \lim _{\varepsilon \downarrow 0}{\frac {P(|X_{t}-\varphi (t)|\leq \varepsilon {\text{ for every }}t\in [0,T])}{P(|X_{t}|\leq \varepsilon {\text{ for every }}t\in [0,T])}}=\exp \left(-\int _{0}^{T}{\tfrac {1}{2}}|{\dot {\varphi }}(t)|^{2}\,dt\right).}
Diffusion processes with constant diffusion coefficient on Euclidean space
The Onsager–Machlup function in the one-dimensional case with constant diffusion coefficient σ is given by[ 7]
L
(
x
,
v
)
=
1
2
|
v
−
b
(
x
)
σ
|
2
+
1
2
d
b
d
x
(
x
)
.
{\displaystyle L(x,v)={\frac {1}{2}}\left|{\frac {v-b(x)}{\sigma }}\right|^{2}+{\frac {1}{2}}{\frac {db}{dx}}(x).}
In the d -dimensional case, with σ equal to the unit matrix, it is given by[ 8]
L
(
x
,
v
)
=
1
2
‖
v
−
b
(
x
)
‖
2
+
1
2
(
div
b
)
(
x
)
,
{\displaystyle L(x,v)={\frac {1}{2}}\|v-b(x)\|^{2}+{\frac {1}{2}}(\operatorname {div} \,b)(x),}
where || ⋅ || is the Euclidean norm and
(
div
b
)
(
x
)
=
∑
i
=
1
d
∂
∂
x
i
b
i
(
x
)
.
{\displaystyle (\operatorname {div} \,b)(x)=\sum _{i=1}^{d}{\frac {\partial }{\partial x_{i}}}b_{i}(x).}
Generalizations
Generalizations have been obtained by weakening the differentiability condition on the curve φ .[ 9] Rather than taking the maximum distance between the stochastic process and the curve over a time interval, other conditions have been considered such as distances based on completely convex norms[ 10] and Hölder, Besov and Sobolev type norms.[ 11]
Applications
The Onsager–Machlup function can be used for purposes of reweighting and sampling trajectories,[ 12]
as well as for determining the most probable trajectory of a diffusion process.[ 13] [ 14]
See also
References
^ Onsager, L. and Machlup, S. (1953)
^ Stratonovich, R. (1971)
^ Takahashi, Y. and Watanabe, S. (1980)
^ Fujita, T. and Kotani, S. (1982)
^ Wittich, Olaf
^ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
^ Dürr, D. and Bach, A. (1978)
^ Ikeda, N. and Watanabe, S. (1980), Chapter VI, Section 9
^ Zeitouni, O. (1989)
^ Shepp, L. and Zeitouni, O. (1993)
^ Capitaine, M. (1995)
^ Adib, A.B. (2008).
^ Adib, A.B. (2008).
^ Dürr, D. and Bach, A. (1978).
Bibliography
Adib, A.B. (2008). "Stochastic actions for diffusive dynamics: Reweighting, sampling, and minimization". J. Phys. Chem. B . 112 (19): 5910– 5916. arXiv :0712.1255 . doi :10.1021/jp0751458 . PMID 17999482 . S2CID 16366252 .
Capitaine, M. (1995). "Onsager–Machlup functional for some smooth norms on Wiener space" . Probab. Theory Relat. Fields . 102 (2): 189– 201. doi :10.1007/bf01213388 . S2CID 120675014 .
Dürr, D. & Bach, A. (1978). "The Onsager–Machlup function as Lagrangian for the most probable path of a diffusion process" . Commun. Math. Phys . 60 (2): 153– 170. Bibcode :1978CMaPh..60..153D . doi :10.1007/bf01609446 . S2CID 41249746 .
Fujita, T. & Kotani, S. (1982). "The Onsager–Machlup function for diffusion processes" . J. Math. Kyoto Univ . 22 : 115– 130. doi :10.1215/kjm/1250521863 .
Ikeda, N. & Watanabe, S. (1980). Stochastic differential equations and diffusion processes . Kodansha-John Wiley.
Onsager, L. & Machlup, S. (1953). "Fluctuations and Irreversible Processes". Physical Review . 91 (6): 1505– 1512. Bibcode :1953PhRv...91.1505O . doi :10.1103/physrev.91.1505 .
Shepp, L. & Zeitouni, O. (1993). "Exponential estimates for convex norms and some applications". Barcelona Seminar on Stochastic Analysis . Vol. 32. Berlin: Birkhauser-Verlag. pp. 203– 215. CiteSeerX 10.1.1.28.8641 . doi :10.1007/978-3-0348-8555-3_11 . ISBN 978-3-0348-9677-1 . CS1 maint: location missing publisher (link )
Stratonovich, R. (1971). "On the probability functional of diffusion processes". Select. Transl. In Math. Stat. Prob . 10 : 273– 286.
Takahashi, Y.; Watanabe, S. (1981). "The probability functionals (Onsager–Machlup functions) of diffusion processes". Stochastic integrals (Proc. Sympos., Univ. Durham, Durham, 1980) . Lecture Notes in Mathematics. Vol. 851. Berlin: Springer. pp. 433– 463. doi :10.1007/BFb0088735 . ISBN 978-3-540-10690-6 . MR 0620998 .
Wittich, Olaf. "The Onsager–Machlup Functional Revisited".
Zeitouni, O. (1989). "On the Onsager–Machlup functional of diffusion processes around non C 2 curves" . Annals of Probability . 17 (3): 1037– 1054. doi :10.1214/aop/1176991255 .
External links