Membrane proteins that adhere temporarily to membranes with which they are associated
Peripheral membrane proteins, or extrinsic membrane proteins,[1] are membrane proteins that adhere only temporarily to the biological membrane with which they are associated. These proteins attach to integral membrane proteins, or penetrate the peripheral regions of the lipid bilayer. The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure. Proteins with GPI anchors are an exception to this rule and can have purification properties similar to those of integral membrane proteins.
The reversible attachment of proteins to biological membranes has shown to regulate cell signaling and many other important cellular events, through a variety of mechanisms.[2] For example, the close association between many enzymes and biological membranes may bring them into close proximity with their lipid substrate(s).[3]Membrane binding may also promote rearrangement, dissociation, or conformational changes within many protein structural domains, resulting in an activation of their biological activity.[4][5] Additionally, the positioning of many proteins are localized to either the inner or outer surfaces or leaflets of their resident membrane.[6]
This facilitates the assembly of multi-protein complexes by increasing the probability of any appropriate protein–protein interactions.
Binding to the lipid bilayer
Peripheral membrane proteins may interact with other proteins or directly with the lipid bilayer. In the latter case, they are then known as amphitropic proteins.[4]
Some proteins, such as G-proteins and certain protein kinases, interact with transmembrane proteins and the lipid bilayer simultaneously. Some polypeptide hormones, antimicrobial peptides, and neurotoxins accumulate at the membrane surface prior to locating and interacting with their cell surface receptor targets, which may themselves be peripheral membrane proteins.
The phospholipid bilayer that forms the cell surface membrane consists of a hydrophobic inner core region sandwiched between two regions of hydrophilicity, one at the inner surface and one at the outer surface of the cell membrane (see lipid bilayer article for a more detailed structural description of the cell membrane). The inner and outer surfaces, or interfacial regions, of model phospholipid bilayers have been shown to have a thickness of around 8 to 10 Å, although this may be wider in biological membranes that include large amounts of gangliosides or lipopolysaccharides.[7]
The hydrophobic inner core region of typical biological membranes may have a thickness of around 27 to 32 Å, as estimated by Small angle X-ray scattering (SAXS).[8]
The boundary region between the hydrophobic inner core and the hydrophilic interfacial regions is very narrow, at around 3 Å, (see lipid bilayer article for a description of its component chemical groups). Moving outwards away from the hydrophobic core region and into the interfacial hydrophilic region, the effective concentration of water rapidly changes across this boundary layer, from nearly zero to a concentration of around 2 M.[9][10]
The phosphate groups within phospholipid bilayers are fully hydrated or saturated with water and are situated around 5 Å outside the boundary of the hydrophobic core region.[11]
Some water-soluble proteins associate with lipid bilayers irreversibly and can form transmembrane alpha-helical or beta-barrel channels. Such transformations occur in pore forming toxins such as colicin A, alpha-hemolysin, and others. They may also occur in BcL-2 like protein , in some amphiphilic antimicrobial peptides , and in certain annexins . These proteins are usually described as peripheral as one of their conformational states is water-soluble or only loosely associated with a membrane.[12]
Membrane binding mechanisms
The association of a protein with a lipid bilayer may involve significant changes within tertiary structure of a protein. These may include the folding of regions of protein structure that were previously unfolded or a re-arrangement in the folding or a refolding of the membrane-associated part of the proteins. It also may involve the formation or dissociation of protein quaternary structures or oligomeric complexes, and specific binding of ions, ligands, or regulatory lipids.
Typical amphitropic proteins must interact strongly with the lipid bilayer in order to perform their biological functions. These include the enzymatic processing of lipids and other hydrophobic substances, membrane anchoring, and the binding and transfer of small nonpolar compounds between different cellular membranes. These proteins may be anchored to the bilayer as a result of hydrophobic interactions between the bilayer and exposed nonpolar residues at the surface of a protein,[13] by specific non-covalent binding interactions with regulatory lipids , or through their attachment to covalently bound lipid anchors.
It has been shown that the membrane binding affinities of many peripheral proteins depend on the specific lipid composition of the membrane with which they are associated.[14]
Non-specific hydrophobic association
Amphitropic proteins associate with lipid bilayers via various hydrophobic anchor structures. Such as amphiphilicα-helixes, exposed nonpolar loops, post-translationally acylated or lipidated amino acid residues, or acyl chains of specifically bound regulatory lipids such as phosphatidylinositol phosphates. Hydrophobic interactions have been shown to be important even for highly cationic peptides and proteins, such as the polybasic domain of the MARCKS protein or histactophilin, when their natural hydrophobic anchors are present. [15]
Some cytosolic proteins are recruited to different cellular membranes by recognizing certain types of lipid found within a given membrane.[18] Binding of a protein to a specific lipid occurs via specific membrane-targeting structural domains that occur within the protein and have specific binding pockets for the lipid head groups of the lipids to which they bind. This is a typical biochemical protein–ligand interaction, and is stabilized by the formation of intermolecular hydrogen bonds, van der Waals interactions, and hydrophobic interactions between the protein and lipid ligand. Such complexes are also stabilized by the formation of ionic bridges between the aspartate or glutamate residues of the protein and lipid phosphates via intervening calcium ions (Ca2+). Such ionic bridges can occur and are stable when ions (such as Ca2+) are already bound to a protein in solution, prior to lipid binding. The formation of ionic bridges is seen in the protein–lipid interaction between both protein C2 type domains and annexins..
Two distinct membrane-association modes of proteins have been identified. Typical water-soluble proteins have no exposed nonpolar residues or any other hydrophobic anchors. Therefore, they remain completely in aqueous solution and do not penetrate into the lipid bilayer, which would be energetically costly. Such proteins interact with bilayers only electrostatically, for example, ribonuclease and poly-lysine interact with membranes in this mode. However, typical amphitropic proteins have various hydrophobic anchors that penetrate the interfacial region and reach the hydrocarbon interior of the membrane. Such proteins "deform" the lipid bilayer, decreasing the temperature of lipid fluid-gel transition.[31] The binding is usually a strongly exothermic reaction.[32] Association of amphiphilic α-helices with membranes occurs similarly.[26][33]Intrinsically unstructured or unfolded peptides with nonpolar residues or lipid anchors can also penetrate the interfacial region of the membrane and reach the hydrocarbon core, especially when such peptides are cationic and interact with negatively charged membranes.[34][35][36]
composed of two domains: alpha/beta barrel domain that contains the active site and an alpha-helical domain that forms the opening tunnel to the active site [60]
In green plants, the enzyme participates in photorespiration. In animals, the enzyme participates in production of oxalate.
β8/α8 fold containing alpha helices, beta strands, and loops and turns[62]
Membrane-targeting domains (“lipid clamps")
Membrane-targeting domains associate specifically with head groups of their lipid ligands embedded into the membrane. These lipid ligands are present in different concentrations in distinct types of biological membranes (for example, PtdIns3P can be found mostly in membranes of early endosomes, PtdIns(3,5)P2 in late endosomes, and PtdIns4P in the Golgi).[18] Hence, each domain is targeted to a specific membrane.
Structural domains mediate attachment of other proteins to membranes. Their binding to membranes can be mediated by calcium ions (Ca2+) that form bridges between the acidic protein residues and phosphate groups of lipids, as in annexins or GLA domains.
Maintenance of plasma membrane integrity and cytoskeletal structure.
Transporters of small hydrophobic molecules
These peripheral proteins function as carriers of non-polar compounds between different types of cell membranes or between membranes and cytosolic protein complexes. The transported substances are phosphatidylinositol, tocopherol, gangliosides, glycolipids, sterol derivatives, retinol, fatty acids, water, macromolecules, red blood cells, phospholipids, and nucleotides.
Some water-soluble proteins and peptides can also form transmembrane channels. They usually undergo oligomerization, significant conformational changes, and associate with membranes irreversibly. 3D structure of one such transmembrane channel, α-hemolysin, has been determined. In other cases, the experimental structure represents a water-soluble conformation that interacts with the lipid bilayer peripherally, although some of the channel-forming peptides are rather hydrophobic and therefore were studied by NMR spectroscopy in organic solvents or in the presence of micelles.
These peptides are characterized by the presence of an unusual amino acid, α-aminoisobutyric acid, and exhibit antibiotic and antifungal properties due to their membrane channel-forming activities.[71]
The modes of action by which antimicrobial peptides kill bacteria is varied and includes disrupting membranes, interfering with metabolism, and targeting cytoplasmic components. In contrast to many conventional antibiotics these peptides appear to be bacteriocidal instead of bacteriostatic.
Defensins are a type of antimicrobial peptide; and are an important component of virtually all innate host defenses against microbial invasion. Defensins penetrate microbial cell membranes by way of electrical attraction, and form a pore in the membrane allowing efflux, which ultimately leads to the lysis of microorganisms.[72]
Members of the Bcl-2 family govern mitochondrial outer membrane permeability. Bcl-2 itself suppresses apoptosis in a variety of cell types including lymphocytes and neuronal cells.
^Ghosh M, Tucker DE, Burchett SA, Leslie CC (November 2006). "Properties of the Group IV phospholipase A2 family". Progress in Lipid Research. 45 (6): 487–510. doi:10.1016/j.plipres.2006.05.003. PMID16814865.
^McIntosh TJ, Vidal A, Simon SA (2003). "The energetics of peptide-lipid interactions: modification by interfacial dipoles and cholesterol". Current Topics in Membranes. Vol. 52. Academic Press. pp. 205–253. ISBN978-0-12-643871-0.
^McIntosh TJ, Simon SA (2006). "Roles of bilayer material properties in function and distribution of membrane proteins". Annual Review of Biophysics and Biomolecular Structure. 35 (1): 177–198. doi:10.1146/annurev.biophys.35.040405.102022. PMID16689633.
^ abHanakam F, Gerisch G, Lotz S, Alt T, Seelig A (August 1996). "Binding of hisactophilin I and II to lipid membranes is controlled by a pH-dependent myristoyl-histidine switch". Biochemistry. 35 (34): 11036–11044. doi:10.1021/bi960789j. PMID8780505.
^Silvius JR (2003). "Lipidated peptides as tools for understanding the membrane interactions of lipid-modified proteins". Current Topics in Membranes. Vol. 52. Academic Press. pp. 371–395. ISBN978-0-12-643871-0.
^Baumann NA, Mennon AK (2002). "Lipid modifications of proteins". In Vance DE, Vance JE (eds.). Biochemistry of Lipids, Lipoproteins and Membranes (4th ed.). Elsevier Science. pp. 37–54. ISBN978-0-444-51139-3.
^ abCho W, Stahelin RV (June 2005). "Membrane-protein interactions in cell signaling and membrane trafficking". Annual Review of Biophysics and Biomolecular Structure. 34: 119–151. doi:10.1146/annurev.biophys.33.110502.133337. PMID15869386.
^Sankaram MB, Marsh D (1993). "Protein-lipid interactions with peripheral membrane proteins". In Watts A (ed.). Protein-lipid interactions. Elsevier. pp. 127–162. ISBN0-444-81575-9.
^ abHristova K, Wimley WC, Mishra VK, Anantharamiah GM, Segrest JP, White SH (July 1999). "An amphipathic alpha-helix at a membrane interface: a structural study using a novel X-ray diffraction method". Journal of Molecular Biology. 290 (1): 99–117. doi:10.1006/jmbi.1999.2840. PMID10388560.
^Efremov RG, Nolde DE, Konshina AG, Syrtcev NP, Arseniev AS (September 2004). "Peptides and proteins in membranes: what can we learn via computer simulations?". Current Medicinal Chemistry. 11 (18): 2421–2442. doi:10.2174/0929867043364496. PMID15379706.
^Lomize A, Lomize M, Pogozheva I. "Comparison with experimental data". Orientations of Proteins in Membranes. University of Michigan. Retrieved 2007-02-08.
^Papahadjopoulos D, Moscarello M, Eylar EH, Isac T (September 1975). "Effects of proteins on thermotropic phase transitions of phospholipid membranes". Biochimica et Biophysica Acta (BBA) - Biomembranes. 401 (3): 317–335. doi:10.1016/0005-2736(75)90233-3. PMID52374.
^Chugh JK, Wallace BA (August 2001). "Peptaibols: models for ion channels". Biochemical Society Transactions. 29 (Pt 4): 565–570. doi:10.1042/BST0290565. PMID11498029.
Seaton BA, Roberts MF (1996). "Peripheral membrane proteins". In Mertz K, Roux B (eds.). Biological Membranes. Boston, MA: Birkhauser. pp. 355–403.
Benga G (1985). "Protein-lipid interactions in biological membranes". In Benga G (ed.). Structure and Properties of Biological Membranes. Vol. 1. Boca Raton, FL: CRC Press. pp. 159–188.
Kessel A, Ben-Tal N (January 2002). "Free energy determinants of peptide association with lipid bilayers". Current Topics in Membranes. 52: 205–253. doi:10.1016/S1063-5823(02)52010-X. ISBN9780121533526.
McIntosh TJ, Simon SA (2006). "Roles of bilayer material properties in function and distribution of membrane proteins". Annual Review of Biophysics and Biomolecular Structure. 35 (1): 177–198. doi:10.1146/annurev.biophys.35.040405.102022. PMID16689633.