^Guardia, Ana; Baiget, Jessica; Cacho, Mónica; Pérez, Arancha; Ortega-Guerra, Montserrat; Nxumalo, Winston; Khanye, Setshaba D.; Rullas, Joaquín; Ortega, Fátima; Jiménez, Elena; Pérez-Herrán, Esther; Fraile-Gabaldón, María Teresa; Esquivias, Jorge; Fernández, Raquel; Porras-De Francisco, Esther; Encinas, Lourdes; Alonso, Marta; Giordano, Ilaria; Rivero, Cristina; Miguel-Siles, Juan; Osende, Javier G.; Badiola, Katrina A.; Rutledge, Peter J.; Todd, Matthew H.; Remuiñán, Modesto; Alemparte, Carlos (2018). "Easy-To-Synthesize Spirocyclic Compounds Possess Remarkable in Vivo Activity against Mycobacterium tuberculosis". Journal of Medicinal Chemistry. 61 (24): 11327–11340. doi:10.1021/acs.jmedchem.8b01533. PMID30457865.
^Yu, Mingfeng; Nagalingam, Gayathri; Ellis, Samantha; Martinez, Elena; Sintchenko, Vitali; Spain, Malcolm; Rutledge, Peter J.; Todd, Matthew H.; Triccas, James A. (2016). "Nontoxic Metal–Cyclam Complexes, a New Class of Compounds with Potency against Drug-Resistant Mycobacterium tuberculosis". Journal of Medicinal Chemistry. 59 (12): 5917–5921. doi:10.1021/acs.jmedchem.6b00432. hdl:2123/22237. PMID27214150.
^Manos-Turvey, Alexandra; Bulloch, Esther M. M.; Rutledge, Peter J.; Baker, Edward N.; Lott, J. Shaun; Payne, Richard J. (2010). "Inhibition Studies of Mycobacterium tuberculosis Salicylate Synthase (MbtI)". ChemMedChem. 5 (7): 1067–1079. doi:10.1002/cmdc.201000137. PMID20512795.
^Spain, Malcolm; Wong, Joseph K.-H.; Nagalingam, Gayathri; Batten, James M.; Hortle, Elinor; Oehlers, Stefan H.; Jiang, Xiao Fan; Murage, Hasini E.; Orford, Jack T.; Crisologo, Patrick; Triccas, James A.; Rutledge, Peter J.; Todd, Matthew H. (2018). "Antitubercular Bis-Substituted Cyclam Derivatives: Structure–Activity Relationships and in Vivo Studies". Journal of Medicinal Chemistry. 61 (8): 3595–3608. doi:10.1021/acs.jmedchem.7b01569. hdl:2123/22236. PMID29558124.
^Devi, Prarthana; Rutledge, Peter J. (2017). "Cyclobutanone Analogues of β-Lactam Antibiotics: β-Lactamase Inhibitors with Untapped Potential?". ChemBioChem. 18 (4): 338–351. doi:10.1002/cbic.201600529. hdl:2123/22242. PMID27992105.
^Lau, Yu Heng; Clegg, Jack K.; Price, Jason R.; Macquart, Rene B.; Todd, Matthew H.; Rutledge, Peter J. (2018). "Molecular Switches for any pH: A Systematic Study of the Versatile Coordination Behaviour of Cyclam Scorpionands". Chemistry – A European Journal. 24 (7): 1573–1585. doi:10.1002/chem.201703488. hdl:2123/20371. PMID29052259.
^Lau, Yu Heng; Price, Jason R.; Todd, Matthew H.; Rutledge, Peter J. (2011). "A Click Fluorophore Sensor that Can Distinguish CuII and HgII via Selective Anion-Induced Demetallation". Chemistry – A European Journal. 17 (10): 2850–2858. doi:10.1002/chem.201002477. PMID21305620.
^Lau, Yu Heng; Rutledge, Peter J.; Watkinson, Michael; Todd, Matthew H. (2011). "Chemical sensors that incorporate click-derived triazoles". Chemical Society Reviews. 40 (5): 2848–66. doi:10.1039/C0CS00143K. PMID21380414.
^Spain, Malcolm; Wong, Joseph K.-H.; Nagalingam, Gayathri; Batten, James M.; Hortle, Elinor; Oehlers, Stefan H.; Jiang, Xiao Fan; Murage, Hasini E.; Orford, Jack T.; Crisologo, Patrick; Triccas, James A.; Rutledge, Peter J.; Todd, Matthew H. (2018). "Antitubercular Bis-Substituted Cyclam Derivatives: Structure–Activity Relationships and in Vivo Studies". Journal of Medicinal Chemistry. 61 (8): 3595–3608. doi:10.1021/acs.jmedchem.7b01569. hdl:2123/22236. ISSN0022-2623. PMID29558124.
^Todd, Matthew H.; Watkinson, Michael; Rutledge, Peter J.; Lau, Yu Heng (2011). "Chemical sensors that incorporate click-derived triazoles". Chemical Society Reviews. 40 (5): 2848–2866. doi:10.1039/C0CS00143K. ISSN1460-4744. PMID21380414.
^Lau, Yu Heng; Price, Jason R.; Todd, Matthew H.; Rutledge, Peter J. (2011). "A Click Fluorophore Sensor that Can Distinguish CuII and HgII via Selective Anion-Induced Demetallation". Chemistry – A European Journal. 17 (10): 2850–2858. doi:10.1002/chem.201002477. ISSN1521-3765. PMID21305620.
^Ast, Sandra; Rutledge, Peter J.; Todd, Matthew H. (2012). "Reversing the Triazole Topology in a Cyclam-Triazole-Dye Ligand Gives a 10-Fold Brighter Signal Response to Zn2+ in Aqueous Solution". European Journal of Inorganic Chemistry. 2012 (34): 5611–5615. doi:10.1002/ejic.201201072. ISSN1099-0682.