The Petrie polygon of the dodecahedron is a skewdecagon. Seen from the solid's 5-fold symmetry axis it looks like a regular decagon. Every pair of consecutive sides belongs to one pentagon (but no triple does).
The Petrie dual is also called the Petrial, and the Petrie dual of an embedded graph may be denoted .[2]
It can be obtained from a signed rotation system or ribbon graph representation of the embedding by twisting every edge of the embedding.
Properties
Like the usual dual graph, repeating the Petrie dual operation twice returns to the original surface embedding.
Unlike the usual dual graph (which is an embedding of a generally different graph in the same surface) the Petrie dual is an embedding of the same graph in a generally different surface.[1]
Surface duality and Petrie duality are two of the six Wilson operations, and together generate the group of these operations.[3]
For example, the Petrie dual of a cube (a bipartite graph with eight vertices and twelve edges, embedded onto a sphere with six square faces)
has four[4] hexagonal faces, the equators of the cube. Topologically, it forms an embedding of the same graph onto a torus.[1]
The regular maps obtained in this way are as follows.
The petrial tetrahedron, {3,3}π, has 4 vertices, 6 edges, and 3 skew square faces. With an Euler characteristic, χ, of 1, it is topologically identical to the hemi-cube, {4,3}/2.
The petrial cube, {4,3}π, has 8 vertices, 12 edges, and 4 skew hexagons, colored red, green, blue and orange here. With an Euler characteristic of 0, it can also be seen in the four hexagonal faces of the hexagonal tiling as type {6,3}(2,0).
The petrial octahedron, {3,4}π, has 6 vertices, 12 edges, and 4 skew hexagon faces. It has an Euler characteristic of −2, and has a mapping to the hyperbolic order-4 hexagonal tiling, as type {6,4}3.
The petrial dodecahedron, {5,3}π, has 20 vertices, 30 edges, and 6 skew decagonal faces, and Euler characteristic of −4, related to the hyperbolic tiling as type {10,3}5.
The petrial icosahedron, {3,5}π, has 12 vertices, 30 edges, and 6 skew decagonal faces, and Euler characteristic of −12, related to the hyperbolic tiling as type {10,5}3.
^ abcPisanski, Tomaž; Randić, Milan (2000), "Bridges between geometry and graph theory", in Gorini, Catherine A. (ed.), Geometry at work, MAA Notes, vol. 53, Washington, DC: Math. Assoc. America, pp. 174–194, MR1782654. See in particular p. 181.
^ abMcMullen, Peter; Schulte, Egon (2002), Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, vol. 92, Cambridge University Press, p. 192, ISBN9780521814966