Share to: share facebook share twitter share wa share telegram print page

Skorokhod's representation theorem

In mathematics and statistics, Skorokhod's representation theorem is a result that shows that a weakly convergent sequence of probability measures whose limit measure is sufficiently well-behaved can be represented as the distribution/law of a pointwise convergent sequence of random variables defined on a common probability space. It is named for the Ukrainian mathematician A. V. Skorokhod.

Statement

Let be a sequence of probability measures on a metric space such that converges weakly to some probability measure on as . Suppose also that the support of is separable. Then there exist -valued random variables defined on a common probability space such that the law of is for all (including ) and such that converges to , -almost surely.

See also

References

Kembali kehalaman sebelumnya