Share to: share facebook share twitter share wa share telegram print page

Stepwise regression

In statistics, stepwise regression is a method of fitting regression models in which the choice of predictive variables is carried out by an automatic procedure.[1][2][3][4] In each step, a variable is considered for addition to or subtraction from the set of explanatory variables based on some prespecified criterion. Usually, this takes the form of a forward, backward, or combined sequence of F-tests or t-tests.

The frequent practice of fitting the final selected model followed by reporting estimates and confidence intervals without adjusting them to take the model building process into account has led to calls to stop using stepwise model building altogether[5][6] or to at least make sure model uncertainty is correctly reflected by using prespecified, automatic criteria together with more complex standard error estimates that remain unbiased.[7][8]

In this example from engineering, necessity and sufficiency are usually determined by F-tests. For additional consideration, when planning an experiment, computer simulation, or scientific survey to collect data for this model, one must keep in mind the number of parameters, P, to estimate and adjust the sample size accordingly. For K variables, P = 1(Start) + K(Stage I) + (K2 − K)/2(Stage II) + 3K(Stage III) = 0.5K2 + 3.5K + 1. For K < 17, an efficient design of experiments exists for this type of model, a Box–Behnken design,[9] augmented with positive and negative axial points of length min(2, (int(1.5 + K/4))1/2), plus point(s) at the origin. There are more efficient designs, requiring fewer runs, even for K > 16.

Main approaches

The main approaches for stepwise regression are:

  • Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant extent.
  • Backward elimination, which involves starting with all candidate variables, testing the deletion of each variable using a chosen model fit criterion, deleting the variable (if any) whose loss gives the most statistically insignificant deterioration of the model fit, and repeating this process until no further variables can be deleted without a statistically significant loss of fit.
  • Bidirectional elimination, a combination of the above, testing at each step for variables to be included or excluded.

Alternatives

A widely used algorithm was first proposed by Efroymson (1960).[10] This is an automatic procedure for statistical model selection in cases where there is a large number of potential explanatory variables, and no underlying theory on which to base the model selection. The procedure is used primarily in regression analysis, though the basic approach is applicable in many forms of model selection. This is a variation on forward selection. At each stage in the process, after a new variable is added, a test is made to check if some variables can be deleted without appreciably increasing the residual sum of squares (RSS). The procedure terminates when the measure is (locally) maximized, or when the available improvement falls below some critical value.

One of the main issues with stepwise regression is that it searches a large space of possible models. Hence it is prone to overfitting the data. In other words, stepwise regression will often fit much better in sample than it does on new out-of-sample data. Extreme cases have been noted where models have achieved statistical significance working on random numbers.[11] This problem can be mitigated if the criterion for adding (or deleting) a variable is stiff enough. The key line in the sand is at what can be thought of as the Bonferroni point: namely how significant the best spurious variable should be based on chance alone. On a t-statistic scale, this occurs at about , where p is the number of predictors. Unfortunately, this means that many variables which actually carry signal will not be included. This fence turns out to be the right trade-off between over-fitting and missing signal. If we look at the risk of different cutoffs, then using this bound will be within a factor of the best possible risk. Any other cutoff will end up having a larger such risk inflation.[12][13]

Model accuracy

A way to test for errors in models created by step-wise regression, is to not rely on the model's F-statistic, significance, or multiple R, but instead assess the model against a set of data that was not used to create the model.[14] This is often done by building a model based on a sample of the dataset available (e.g., 70%) – the “training set” – and use the remainder of the dataset (e.g., 30%) as a validation set to assess the accuracy of the model. Accuracy is then often measured as the actual standard error (SE), MAPE (Mean absolute percentage error), or mean error between the predicted value and the actual value in the hold-out sample.[15] This method is particularly valuable when data are collected in different settings (e.g., different times, social vs. solitary situations) or when models are assumed to be generalizable.

Criticism

Stepwise regression procedures are used in data mining, but are controversial. Several points of criticism have been made.

  • The tests themselves are biased, since they are based on the same data.[16][17] Wilkinson and Dallal (1981)[18] computed percentage points of the multiple correlation coefficient by simulation and showed that a final regression obtained by forward selection, said by the F-procedure to be significant at 0.1%, was in fact only significant at 5%.
  • When estimating the degrees of freedom, the number of the candidate independent variables from the best fit selected may be smaller than the total number of final model variables, causing the fit to appear better than it is when adjusting the r2 value for the number of degrees of freedom. It is important to consider how many degrees of freedom have been used in the entire model, not just count the number of independent variables in the resulting fit.[19]
  • Models that are created may be over-simplifications of the real models of the data.[20]

Such criticisms, based upon limitations of the relationship between a model and procedure and data set used to fit it, are usually addressed by verifying the model on an independent data set, as in the PRESS procedure.

Critics regard the procedure as a paradigmatic example of data dredging, intense computation often being an inadequate substitute for subject area expertise. Additionally, the results of stepwise regression are often used incorrectly without adjusting them for the occurrence of model selection. Especially the practice of fitting the final selected model as if no model selection had taken place and reporting of estimates and confidence intervals as if least-squares theory were valid for them, has been described as a scandal.[7] Widespread incorrect usage and the availability of alternatives such as ensemble learning, leaving all variables in the model, or using expert judgement to identify relevant variables have led to calls to totally avoid stepwise model selection.[5]

See also

References

  1. ^ Efroymson, M. A. (1960) "Multiple regression analysis," Mathematical Methods for Digital Computers, Ralston A. and Wilf, H. S., (eds.), Wiley, New York.
  2. ^ Hocking, R. R. (1976) "The Analysis and Selection of Variables in Linear Regression," Biometrics, 32.
  3. ^ Draper, N. and Smith, H. (1981) Applied Regression Analysis, 2d Edition, New York: John Wiley & Sons, Inc.
  4. ^ SAS Institute Inc. (1989) SAS/STAT User's Guide, Version 6, Fourth Edition, Volume 2, Cary, NC: SAS Institute Inc.
  5. ^ a b Flom, P. L. and Cassell, D. L. (2007) "Stopping stepwise: Why stepwise and similar selection methods are bad, and what you should use," NESUG 2007.
  6. ^ Harrell, F. E. (2001) "Regression modeling strategies: With applications to linear models, logistic regression, and survival analysis," Springer-Verlag, New York.
  7. ^ a b Chatfield, C. (1995) "Model uncertainty, data mining and statistical inference," J. R. Statist. Soc. A 158, Part 3, pp. 419–466.
  8. ^ Efron, B. and Tibshirani, R. J. (1998) "An introduction to the bootstrap," Chapman & Hall/CRC
  9. ^ Box–Behnken designs from a handbook on engineering statistics at NIST
  10. ^ Efroymson, MA (1960) "Multiple regression analysis." In Ralston, A. and Wilf, HS, editors, Mathematical Methods for Digital Computers. Wiley.
  11. ^ Knecht, WR. (2005). Pilot willingness to take off into marginal weather, Part II: Antecedent overfitting with forward stepwise logistic regression. (Technical Report DOT/FAA/AM-O5/15). Federal Aviation Administration
  12. ^ Foster, Dean P., & George, Edward I. (1994). The Risk Inflation Criterion for Multiple Regression. Annals of Statistics, 22(4). 1947–1975. doi:10.1214/aos/1176325766
  13. ^ Donoho, David L., & Johnstone, Jain M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3):425–455. doi:10.1093/biomet/81.3.425
  14. ^ Mark, Jonathan, & Goldberg, Michael A. (2001). Multiple regression analysis and mass assessment: A review of the issues. The Appraisal Journal, Jan., 89–109.
  15. ^ Mayers, J.H., & Forgy, E.W. (1963). The Development of numerical credit evaluation systems. Journal of the American Statistical Association, 58(303; Sept), 799–806.
  16. ^ Rencher, A. C., & Pun, F. C. (1980). Inflation of R² in Best Subset Regression. Technometrics, 22, 49–54.
  17. ^ Copas, J.B. (1983). Regression, prediction and shrinkage. J. Roy. Statist. Soc. Series B, 45, 311–354.
  18. ^ Wilkinson, L., & Dallal, G.E. (1981). Tests of significance in forward selection regression with an F-to enter stopping rule. Technometrics, 23, 377–380.
  19. ^ Hurvich, C. M. and C. L. Tsai. 1990. The impact of model selection on inference in linear regression. American Statistician 44: 214–217.
  20. ^ Roecker, Ellen B. (1991). Prediction error and its estimation for subset—selected models. Technometrics, 33, 459–468.

Read other articles:

Head of the government of the Indian state of Telangana Chief Minister of TelanganaTelaṅgāṇa MukhyamantriIncumbentRevanth Reddysince 7 December 2023Chief Minister's OfficeGovernment of TelanganaStyleThe Honourable (Formal)Mr./Mrs. Chief Minister (Informal)StatusHead of GovernmentAbbreviationCMMember ofTelangana's Cabinet of ministersTelangana LegislatureResidencePragathi Bhavan, HyderabadSeatTelangana SecretariatAppointerGovernor of TelanganaTerm length5 years with the confidence of th…

Jan Kiapoli Ketua Dewan Perwakilan Rakyat Daerah Provinsi Nusa Tenggara Timur ke-5Masa jabatan1972–1982PresidenSoehartoGubernurEl TariWang SuwandiBen MboiWakilLetkol R. IskandarN. D. Dillak, BA PendahuluMarcellinus Adang da GomezPenggantiJosea Nehemia ManafeKetua Dewan Perwakilan Rakyat Daerah Provinsi Nusa Tenggara Timur ke-3Masa jabatan1966–1969PresidenSoehartoGubernurEl TariWang SuwandiBen MboiWakilFrans Sales LegaMayor (Inf) R. Margono PendahuluWilliam Johanes Lalamentik(Ketua Ex…

C-4

Persiapan peledakan C4 C-4 merupakan satu jenis bahan peledak yang biasa untuk tujuan militer. Kata komposisi digunakan untuk bahan peledak yang stabil, dan Komposisi A dan Komposisi B adalah jenis lain yang diketahui. C-4 lebih umum 1.34 berbanding trinitrotoluena (TNT). Ia berhasil menarik popularitas yang disebabkan oleh media termasuk film-film dan permainan video. Deskripsi Setiap bahan peledak baru bisa meledak jika terjadi benturan, gesekan, atau suhu yang meningkat. Jika terjadi gesekan …

Halte Tribungan Tribungan+18 m Halte Tribungan dipotret ketika penelusuran Direktorat Jenderal Perkeretaapian bersama Komunitas Indonesian Railway Preservation Society (IRPS) pada 2024LokasiPaowan, Panarukan, Situbondo, Jawa TimurIndonesiaKoordinat7°42′41″S 113°58′19″E / 7.71139°S 113.97194°E / -7.71139; 113.97194Koordinat: 7°42′41″S 113°58′19″E / 7.71139°S 113.97194°E / -7.71139; 113.97194Ketinggian+18 mOperator Kereta Api …

Sir Frank Macfarlane BurnetBurnet di Walter and Eliza Hall Institute, 1945Lahir(1899-09-03)3 September 1899Traralgon, VictoriaMeninggal31 Agustus 1985(1985-08-31) (umur 85)Port Fairy, VictoriaKebangsaanAustraliaDikenal atasAcquired immune tolerancePenghargaanPenghargaan Nobel (1960) Penghargaan Lasker (1952)Karier ilmiahBidangVirologi Sir Frank Macfarlane Burnet, OM AK KBE (Traralgon, Victoria, 3 September 1899 – Port Fairy, Victoria, 31 Agustus 1985) ialah seorang dokter dari Australia, …

Middle English translations of the Bible Wycliffe BibleAbbreviationWYCComplete Biblepublished1382Online asWycliffe Bible at WikisourceDerived fromLatin VulgateTranslation typeFormal equivalenceRevision1388,[a] 1395Genesis 1:1–3 In þe bigynnyng God made of nouȝt heuene and erþe. Forsoþe þe erþe was idel and voide, and derknessis weren on the face of depþe; and the Spiryt of þe Lord was borun on the watris. And God seide, Liȝt be maad, and liȝt was maad. John 3:16 For…

قرية ألدن     الإحداثيات 42°54′03″N 78°29′36″W / 42.9008°N 78.4933°W / 42.9008; -78.4933   تقسيم إداري  البلد الولايات المتحدة[1]  التقسيم الأعلى مقاطعة إيري  خصائص جغرافية  المساحة 7.040219 كيلومتر مربع7.04022 كيلومتر مربع (1 أبريل 2010)  ارتفاع 263 متر،  و267 متر[2]…

Aji Raden Sayid Mohammad Wali Kota Balikpapan ke-1Masa jabatan1960–1963 PendahuluJabatan baruPenggantiBambang Soetikno Informasi pribadiLahir15 Desember 1918Tenggarong, Hindia BelandaMeninggalTidak diketahuiPartai politikINIPNIGolkarProfesiPolitisiSunting kotak info • L • B H. Aji Raden Sayid Mohammad, biasa disingkat A.R.S. Mohammad (15 Desember 1918 – tidak diketahui), merupakan Wali Kota Balikpapan yang pertama. Dia diangkat oleh Gubernur A.P.T. Pranoto pada tahun 1960 m…

American mathematician and educator Andrew M. GleasonBerlin, 1959Born(1921-11-04)November 4, 1921Fresno, CaliforniaDiedOctober 17, 2008(2008-10-17) (aged 86)Cambridge, MassachusettsAlma materYale University[3]Known for Hilbert's fifth problem Gleason's theorem Greenwood–Gleason graph Gleason–Prange theorem Gleason polynomials Spouse Jean Berko Gleason ​ ​(m. 1959)​Awards Newcomb Cleveland Prize (1952) Gung–Hu Distinguished Service t…

Artikel ini membutuhkan rujukan tambahan agar kualitasnya dapat dipastikan. Mohon bantu kami mengembangkan artikel ini dengan cara menambahkan rujukan ke sumber tepercaya. Pernyataan tak bersumber bisa saja dipertentangkan dan dihapus.Cari sumber: Siklon tropis – berita · surat kabar · buku · cendekiawan · JSTOR Dalam meteorologi, siklon tropis (atau angin topan, angin puyuh, badai tropis, taifun, atau angin ribut tergantung pada daerah dan kekuatannya) a…

تشيب كيل معلومات شخصية الميلاد 10 مارس 1949 (75 سنة)  أتلانتا  مواطنة الولايات المتحدة  الحياة العملية المدرسة الأم جامعة تينيسي  المهنة لاعب كرة قدم كندية  الرياضة كرة القدم الكندية  تعديل مصدري - تعديل   تشيب كيل (بالإنجليزية: Chip Kell)‏ هو لاعب كرة قدم كندية أمريك…

Sidse Babett KnudsenKnudsen di César Awards 2016Lahir22 November 1968 (umur 55)[1]Kopenhagen, DenmarkPekerjaanAktrisTahun aktif1994–sekarang Sidse Babett Knudsen (pengucapan bahasa Denmark: [ˈsisə b̥ab̥ɛd̥ ˈkʰnusn̩]; lahir 22 November 1968)[1] adalah aktris Denmark yang terjun di dunia perfilman, televisi, dan teater. Knudsen mengawali kariernya lewat komedi improvisasi Let's Get Lost (1997). Atas peran pertamanya, ia memenangi Robert Award dan Bodil Aw…

For the Cincinnati television station, see WSTR-TV. 2007 single by Mike Jones featuring Bun B and Snoop DoggMy 64Single by Mike Jones featuring Bun B and Snoop Doggfrom the EP The American Dream B-sideLike What I GotReleasedApril 21, 2007 (2007-04-21)Recorded2006GenreG-funkLength5:11LabelIce Age EntertainmentAsylumWarner Bros. RecordsSongwriter(s)Eric WrightO'Shea JacksonCalvin BroadusMichael JonesBernard FreemanAndre YoungSalih WilliamsProducer(s)Salih WilliamsMike Jones sing…

Numa Pompilius Numa Pompilius (753 - 673 SM; raja Roma 717 - 673 SM) adalah raja kedua Kerajaan Romawi, menggantikan Romulus. Menurut Plutarkhos, Numa adalah putra keempat dari Pomponius, dia dilahirkan pada 21 April 753 SM. Numa diajari filsafat oleh Pythagoras. Numa menikah dengan Tatia, putri dari Titus Tatius (raja kaum Sabin). Pada 717 SM, setelah Romulus meninggal, Senat Romawi memilihnya sebagai raja berikutnya. Salah satu kebijakannya adalah pembangunan kuil Janus di Roma. Dia juga menet…

Military organization to protect the political system of the Islamic Republic in Iran IRGC redirects here. For other uses, see IRGC (disambiguation). Not to be confused with the Libyan Revolutionary Guard Corps. Islamic Revolutionary Guard Corpsسپاه پاسداران انقلاب اسلامیSeal of IRGCOfficial flag (left) and Ceremonial flag (right)Mottoوَأَعِدُّوا لَهُمْ مَا اسْتَطَعْتُمْ مِنْ قُوَّةٍ [Quran 8:60]Prepare against them what you ˹b…

Max Reger Johann Baptist Joseph Maximilian Reger (19 Maret 1873 – 11 Mei 1916) merupakan seorang komponis berkebangsaan Jerman. Dia dilahirkan di, Reger belajar musik di Muenchen dan Wiesbaden dengan Hugo Riemann. Pada tahun 1901 dia pindah ke New York dan pada tahun 1907 dia bekerja di Leipzig. Karya Opus List Violin Sonata no. 1, d-minor, op. 1 (1890) Piano Trio no. 1 for Violin, Viola and Piano, b-minor, op. 2 (1891) Violin Sonata no. 2, D-major, op. 3 (1891) Six Songs, op. 4 …

Niobium nitride Names IUPAC name Niobium nitride Identifiers CAS Number 24621-21-4 Y ECHA InfoCard 100.042.132 PubChem CID 90560 Properties Chemical formula NbN Molar mass 106.91 g/mol Appearance gray solid Density 8.470 g/cm3 Melting point 2,573 °C (4,663 °F; 2,846 K) Solubility in water reacts to form ammonia Structure Crystal structure cubic, cF8 Space group Fm3m, No. 225 Hazards Flash point Non-flammable Safety data sheet (SDS) External MSDS Related c…

Lucas Cranach il Vecchio, Der Baum der Erkenntnis von Gut und Böse, quadro che rappresenta il mito biblico dell'albero della conoscenza del bene e del male La conoscenza è la consapevolezza e la comprensione di verità, fatti o informazioni ottenute attraverso l'esperienza o l'apprendimento (a posteriori), ovvero tramite l'introspezione (a priori).[1] La conoscenza è l'autocoscienza del possesso di informazioni connesse tra di loro, le quali, prese singolarmente, hanno un valore e un'…

В Википедии есть статьи о других людях с такой фамилией, см. Горский; Горский, Александр. Александр Васильевич Горский Дата рождения 16 (28) августа 1812 Место рождения Кострома, Российская империя Дата смерти 11 (23) октября 1875 (63 года) Место смерти Сергиев Посад, Дмитровский уезд, …

この項目には、一部のコンピュータや閲覧ソフトで表示できない文字が含まれています(詳細)。 数字の大字(だいじ)は、漢数字の一種。通常用いる単純な字形の漢数字(小字)の代わりに同じ音の別の漢字を用いるものである。 概要 壱万円日本銀行券(「壱」が大字) 弐千円日本銀行券(「弐」が大字) 漢数字には「一」「二」「三」と続く小字と、「壱」「弐」…

Kembali kehalaman sebelumnya