Timeline of abelian varieties
This is a timeline of the theory of abelian varieties in algebraic geometry , including elliptic curves.
Early history
3rd century AD Diophantus of Alexandria studies rational points on elliptic curves
Seventeenth century
Eighteenth century
Nineteenth century
1826 Niels Henrik Abel , Abel-Jacobi map
1827 Inversion of elliptic integrals independently by Abel and Carl Gustav Jacob Jacobi
1829 Jacobi, Fundamenta nova theoriae functionum ellipticarum , introduces four theta functions of one variable
1835 Jacobi points out the use of the group law for diophantine geometry , in De usu Theoriae Integralium Ellipticorum et Integralium Abelianorum in Analysi Diophantea [ 9]
1836-7 Friedrich Julius Richelot , the Richelot isogeny .[ 10]
1847 Adolph Göpel gives the equation of the Kummer surface [ 11]
1851 Johann Georg Rosenhain writes a prize essay on the inversion problem in genus 2.[ 12]
c. 1850 Thomas Weddle - Weddle surface
1856 Weierstrass elliptic functions
1857 Bernhard Riemann [ 13] lays the foundations for further work on abelian varieties in dimension > 1, introducing the Riemann bilinear relations and Riemann theta function .
1865 Carl Johannes Thomae , Theorie der ultraelliptischen Funktionen und Integrale erster und zweiter Ordnung [ 14]
1866 Alfred Clebsch and Paul Gordan , Theorie der Abel'schen Functionen
1869 Karl Weierstrass proves an abelian function satisfies an algebraic addition theorem
1879, Charles Auguste Briot , Théorie des fonctions abéliennes
1880 In a letter to Richard Dedekind , Leopold Kronecker describes his Jugendtraum ,[ 15] to use complex multiplication theory to generate abelian extensions of imaginary quadratic fields
1884 Sofia Kovalevskaya writes on the reduction of abelian functions to elliptic functions [ 16]
1888 Friedrich Schottky finds a non-trivial condition on the theta constants for curves of genus
g
=
4
{\displaystyle g=4}
, launching the Schottky problem .
1891 Appell–Humbert theorem of Paul Émile Appell and Georges Humbert , classifies the holomorphic line bundles on an abelian surface by cocycle data.
1894 Die Entwicklung der Theorie der algebräischen Functionen in älterer und neuerer Zeit , report by Alexander von Brill and Max Noether
1895 Wilhelm Wirtinger , Untersuchungen über Thetafunktionen , studies Prym varieties
1897 H. F. Baker , Abelian Functions: Abel's Theorem and the Allied Theory of Theta Functions
Twentieth century
Twenty-first century
Notes
^ PDF
^ Miscellaneous Diophantine Equations at MathPages
^ Fagnano_Giulio biography
^ E. T. Whittaker , A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (fourth edition 1937), p. 72.
^ André Weil , Number Theory: An approach through history (1984), p. 1.
^ Landen biography
^ Chronology of the Life of Carl F. Gauss
^ Semen Grigorʹevich
Gindikin, Tales of Physicists and Mathematicians (1988 translation), p. 143.
^ Dale Husemoller , Elliptic Curves .
^ Richelot, Essai sur une méthode générale pour déterminer les valeurs des intégrales ultra-elliptiques, fondée sur des transformations remarquables de ces transcendantes , C. R. Acad. Sci. Paris. 2 (1836), 622-627; De transformatione integralium Abelianorum primi ordinis commentatio , J. Reine Angew. Math. 16 (1837), 221-341.
^ Gopel biography
^ "Rosenhain biography" . www.gap-system.org . Archived from the original on 2008-09-07.
^ Theorie der Abel'schen Funktionen, J. Reine Angew. Math. 54 (1857), 115-180
^ "Thomae biography" . www.gap-system.org . Archived from the original on 2006-09-28.
^ Some Contemporary Problems with Origins in the Jugendtraum , Robert Langlands
^ Über die Reduction einer bestimmten Klasse Abel'scher Integrale Ranges auf elliptische Integrale, Acta Mathematica 4, 392–414 (1884).
^ PDF , p. 168.
^ Ruggiero Torelli , Sulle varietà di Jacobi , Rend. della R. Acc. Nazionale dei Lincei (5), 22, 1913, 98–103.
^ Gaetano Scorza , Intorno alla teoria generale delle matrici di Riemann e ad alcune sue applicazioni, Rend. del Circolo Mat. di Palermo 41 (1916)
^ Carl Ludwig Siegel , Einführung in die Theorie der Modulfunktionen n-ten Grades , Mathematische Annalen 116 (1939), 617–657
^ Jean-Pierre Serre and John Tate , Good Reduction of Abelian Varieties , Annals of Mathematics , Second Series, Vol. 88, No. 3 (Nov., 1968), pp. 492–517.
^ Daniel Huybrechts , Fourier–Mukai transforms in algebraic geometry (2006), Ch. 9.
^ Jean-Marc Fontaine , Il n'y a pas de variété abélienne sur Z , Inventiones Mathematicae (1985) no. 3, 515–538.