CatamorphismeDans la théorie des catégories, le concept de catamorphisme (du Grec: κατα- = vers le bas; morphisme = forme) dénote l'unique homomorphisme pour une algèbre initiale. Le concept a été appliqué dans la programmation fonctionnelle. Le concept dual est celui d'anamorphisme. Le catamorphisme dans la programmation fonctionnelleEn programmation fonctionnelle, un catamorphisme est une généralisation de la fonction fold sur les listes au cadre de types algébriques de données quelconques pouvant être décrit comme des algèbres initiales. Une des premières publications visant à introduire la notion d'anamorphisme dans le contexte de la programmation fut l'œuvre Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire[1], par Erik Meijer (en), et qui fut dans le contexte du langage de programmation Squiggol (en). Les catamorphismes sont une forme duales des anamorphismes, eux-mêmes généralisation des opérations de type unfold. ExempleL'exemple suivant en Haskell définit un catamorphisme sur une structure d'arbre (de type data Tree a = Leaf a
| Branch (Tree a) (Tree a)
type TreeAlgebra a r = (a -> r, r -> r -> r)
foldTree :: TreeAlgebra a r -> Tree a -> r
foldTree (f, g) (Leaf x) = f x
foldTree (f, g) (Branch l r) = g (foldTree (f, g) l) (foldTree (f, g) r)
treeDepth :: TreeAlgebra a Integer
treeDepth = (const 1, \l r -> 1 + max l r)
sumTree :: (Num a) => TreeAlgebra a a
sumTree = (id, (+))
Ici, Catamorphisme dans la théorie des catégoriesNotes et références
Voir aussiArticles connexes |