Le texte ne doit pas être écrit en capitales (les noms de famille non plus), ni en gras, ni en italique, ni en « petit »…
Le gras n'est utilisé que pour surligner le titre de l'article dans l'introduction, une seule fois.
L'italique est rarement utilisé : mots en langue étrangère, titres d'œuvres, noms de bateaux, etc.
Les citations ne sont pas en italique mais en corps de texte normal. Elles sont entourées par des guillemets français : « et ».
Les listes à puces sont à éviter, des paragraphes rédigés étant largement préférés. Les tableaux sont à réserver à la présentation de données structurées (résultats, etc.).
Les appels de note de bas de page (petits chiffres en exposant, introduits par l'outil « Source ») sont à placer entre la fin de phrase et le point final[comme ça].
Les liens internes (vers d'autres articles de Wikipédia) sont à choisir avec parcimonie. Créez des liens vers des articles approfondissant le sujet. Les termes génériques sans rapport avec le sujet sont à éviter, ainsi que les répétitions de liens vers un même terme.
Les liens externes sont à placer uniquement dans une section « Liens externes », à la fin de l'article. Ces liens sont à choisir avec parcimonie suivant les règles définies. Si un lien sert de source à l'article, son insertion dans le texte est à faire par les notes de bas de page.
Cette relation n'est pas valable que pour une proportion infinitésimale de nombres réels. Si désigne le nombre d'entiers naturels inférieurs à pour lesquels l'inégalité ci-dessus n'est pas valide : alors converge vers zéro lorsque tend vers l'infini.
Wentang Kuo, Yu-Ru Liu, « The Erdős–Kac theorem and its generalizations », in Jean-Marie De Koninck, Andrew Granville, Florian Luca (éd.), Anatomy of integers. D'après l'atelier CRM, Montréal, Canada, 13-, Actes de CRM et notes de cours, 46, Providence, RI: American Mathematical Society, pp. 209-216, 2008 (ISBN978-0-8218-4406-9), lien Zentralblatt MATH
Pál Turán, « On a theorem of Hardy and Ramanujan », Journal de la London Mathematical Society, 9 (4): 274-276, doi : 10.1112 / jlms / s1-9.4.274, 1934 (ISSN0024-6107), {$lien Zentralblatt MATH