À mesure que leur numéro atomique augmente, les transuraniens deviennent rapidement très instables. Le neptunium93Np et le plutonium94Pu, les plus légers d'entre eux, ont des isotopes dont la période radioactive se chiffre en millions d'années, mais, parmi les actinides suivants, seul le curium96Cm atteint encore 15,6 millions d'années avec l'isotope247Cm, et, parmi les transactinides observés, seul le dubnium105Db atteint 16 heures avec l'isotope 268Db. Un « îlot de stabilité » avait été conjecturé sur la 8e période parmi les superactinides, mais se trouverait plutôt, s'il existe réellement, parmi les transactinides de la 7e période.
Les onze premiers transuraniens sont des actinides, au même titre que le thorium et l'uranium. Les quatre plus légers — neptunium, plutonium, américium, curium — sont produits en quantités significatives au sein des réacteurs nucléaires, tandis que les sept suivants ne sont synthétisés qu'en laboratoire.
Les propriétés chimiques des actinides sont conformes à la périodicité observée tout au long des six premières périodes du tableau périodique. Ils ont un comportement rappelant celui des lanthanides, mais avec une plus grande stabilité des états d'oxydation élevés (+5 et +6) en raison du cortège électronique plus chargé des actinides, qui écrante davantage le noyau vis-à-vis des électrons périphériques. En revanche, les propriétés chimiques des transactinides s'écartent de la périodicité des éléments plus légers : pour Z >> 100, des effets relativistes deviennent significatifs sur des électrons en interaction avec un noyau très fortement chargé, certaines corrections induites par l'électrodynamique quantique ne peuvent plus être négligées, les approximations considérant les électrons de façon individuelle pour déterminer les orbitales cessent d'être valides, et des effets de couplage spin-orbite redistribuent les niveaux d'énergie, et donc les sous-couches électroniques : il s'ensuit que la distribution des électrons autour du noyau obéit de moins en moins aux règles bien vérifiées pour les six premières périodes, et que les propriétés des éléments dans cette région du tableau cessent d'être prédictibles en fonction de leur groupe.
Ainsi, l'élément 118Og devrait être un gaz rare en vertu de son positionnement en bas de la 18e colonne, mais il s'agirait en fait d'un solide semiconducteur aux propriétés voisines d'un métalloïde[2], tandis que l'élément 114Fl, qui devrait être un métal pauvre en bas de la 14e colonne, aurait plutôt les propriétés d'un gaz rare[3].
93 (neptunium, Np) en 1940, ainsi nommé d'après la planète Neptune, car il vient après l'uranium, de même que Neptune suit Uranus dans l'ordre des planètes.
94 (plutonium, Pu) en 1940, nommé d'après la planète Pluton, selon la règle de dénomination adoptée pour le neptunium, puisque Pluton suit Neptune dans l'ordre des planètes.
95 (américium, Am) en 1944, nommé ainsi parce qu'il est un analogue de l'europium, et d'après le nom du continent où il a été produit pour la première fois.
96 (curium, Cm) en 1944, d'après Pierre et Marie Curie, les célèbres chercheurs qui ont isolé les premiers éléments radioactifs.
97 (berkélium, Bk) en 1949, baptisé d'après la ville de Berkeley, où l'université est située.
98, (californium, Cf) en 1950, d'après l'État de Californie, où l'université est située.
100 (fermium, Fm) en 1952, nommé d'après Enrico Fermi, le physicien qui réalisa la première réaction en chaîne contrôlée.
101 (mendélévium, Md) en 1955, d'après le nom du chimiste russe Dmitri Mendeleïev, l'un des deux hommes qui développèrent le tableau périodique des éléments chimiques.
102 (nobélium, No) en 1958, nommé ainsi à la suite de la première revendication (aujourd'hui invalidée) de sa découverte par l'Institut Nobel à Oslo en Norvège en 1957 ; le « Transfermium Working Group » de l'UICPA-UIPPA a néanmoins attribué en 1992 au laboratoire Flerov du JINR à Dubna, en Russie, la paternité de la découverte de cet élément, estimant que c'est à Dubna qu'il a été formellement identifié pour la première fois, en 1966.
Trois transactinides à l'époque soviétique dont la dénomination a fait l'objet d'une intense querelle avec l'équipe concurrente de Berkeley dans un contexte de guerre froide, querelle close seulement en 1997 par un accord global sous l'égide de l'UICPA et qui avait été à l'origine de la dénomination systématique des éléments afin de prévenir de futures querelles de cette nature :
104 (rutherfordium, Rf) en 1966, appelé kourtchatovium (Ku) dans tout le bloc de l'Est jusqu'à la chute du mur de Berlin, en hommage au physicien russe Igor Kourtchatov, tandis que l'IUPAC adoptait la dénomination systématiqueunnilquadium ; la querelle a été réglée en 1997 par l'adoption du nom occidental pour l'élément 104 en hommage au chimiste et prix Nobel néo-zélandais Ernest Rutherford, en l'échange du nom soviétique pour l'élément suivant.
105 (dubnium, Db) en 1968, qui fut appelé hahnium (Ha) en Occident, en hommage au chimiste et prix Nobel allemand Otto Hahn, jusqu'en 1997.
106 (seaborgium, Sg) en 1974, d'après le nom de Glenn T. Seaborg, ce qui fut controversé car ce dernier était encore vivant à cette date, bien qu'il y ait eu un précédent avec l'einsteinium ; l'adoption de ce nom contribua cependant à clore en 1997 la querelle américano-soviétique relative à la dénomination des éléments 104, 105 et 106.
Six transactinides découverts à l'époque post-soviétique et longtemps désignés par la dénomination systématique de l'UICPA en attendant d'être formellement validés et nommés par cette organisation, une nouvelle querelle ayant vu le jour en 2006 à propos de l'oganesson :
117 (tennesse, Ts) en 2010, en collaboration avec le GSI
118 (oganesson, Og) en 2002, en collaboration avec le LNLL de Livermore, en Californie ; dans un contexte de regain de tension entre Russes et Américains, l'équipe russe a décidé unilatéralement d'appeler cet élément московий (« Moskowium, » symbole Mk) en référence à l'oblast de Moscou où se trouve Dubna, ce que conteste bien entendu l'équipe américaine.
107 (bohrium, Bh) en 1981, mot formé à partir du nom du physicien danois Niels Bohr, qui a compté dans l'élucidation de la structure de l'atome. Le groupe avait d'abord suggéré le nom nielsbohrium, mais c'est bohrium qui fut finalement adopté.
108 (hassium, Hs) en 1984, ainsi nommé d'après la forme latine Hassia du Land de Hesse, où est implanté le GSI, de façon similaire à l'appellation du californium.
109 (meitnerium, Mt) en 1982, nommé d'après Lise Meitner, physicienne allemande qui fut l'une des premières impliquée dans l'étude de la fission nucléaire.
110 (darmstadtium, Ds) en 1994, d'après la ville de Darmstadt, en Allemagne, où est implanté le GSI, de façon similaire à l'appellation du berkélium.
[*] Ces éléments n'ont à ce jour pas encore été observés et leur existence demeure par conséquent conjecturale.
À noter que le concept de superactinide relève de la chimie, laquelle dépend du cortège électronique associé aux noyaux atomiques, de sorte que le nombre exact de superactinides est inconnu car on ignore précisément comment se remplirait la couche 7g.
Notes et références
↑ a et b(en) V. F. Gopka, A. V. Yushchenko, V. A. Yushchenko, I. V. Panov et Ch. Kim, « Identification of absorption lines of short half-life actinides in the spectrum of Przybylski’s star (HD 101065) », Kinematics and Physics of Celestial Bodies, vol. 24, no 2, , p. 89-98 (DOI10.3103/S0884591308020049, lire en ligne).