Алгебраическая функция
Алгебраическая функция — элементарная функция, которая в окрестности каждой точки области определения может быть неявно задана с помощью алгебраического уравнения. Формальное определение: Функция называется алгебраической в точке , если существует окрестность точки , в которой верно тождество где есть многочлен от переменной. Функция называется алгебраической, если она является алгебраической в каждой точке области определения. Например, функция действительного переменного является алгебраической на интервале в поле действительных чисел, так как она удовлетворяет уравнению Существует аналитическое продолжение функции на комплексную плоскость, с вырезанным отрезком или с двумя вырезанными лучами и . В этой области полученная функция комплексного переменного является алгебраической и аналитической. Известно, что если функция является алгебраической в точке, то она является и аналитической в данной точке. Обратное неверно. Функции, являющиеся аналитическими, но не являющиеся алгебраическими, называются трансцендентными. Частные случаиЧастными случаями алгебраических функций являются: Алгебраические и трансцендентные числаДействительные числа, которые являются корнем какого-то алгебраического уравнения с рациональными коэффициентами, называются алгебраическими. Действительные числа, которые не являются корнем никакого алгебраического уравнения с рациональными коэффициентами, называются трансцендентными. Все рациональные числа являются алгебраическими. Среди иррациональных чисел есть как алгебраические, так и трансцендентные. Например, — алгебраическое иррациональное число, а — трансцендентное иррациональное число. См. такжеЛитература
Information related to Алгебраическая функция |