Бесконечномерное пространствоБесконечномерное пространство — векторное пространство c бесконечно большой размерностью. Изучение бесконечномерных пространств и их отображений является главной задачей функционального анализа. Наиболее простыми бесконечномерными пространствами являются гильбертовы пространства, наиболее близкие по свойствам к конечномерным евклидовым пространствам[1]. ОпределениеЛинейное векторное пространство называется бесконечномерным, если для любого целого числа в нем найдется линейно независимая система, состоящая из векторов[2][3]. БазисДля бесконечномерного пространства существуют различные определения базиса. Так, например, базис Гамеля определяется, как множество векторов в линейном пространстве, таких, что любой вектор пространства может быть представлен в виде некоторой их конечной линейной комбинации единственным образом. Для топологических векторных пространств можно определить базис Шаудера. Система элементов образует базис Шаудера пространства , если каждый элемент представим единственным образом в виде сходящегося ряда [4]. Базис Шаудера существует не всегда. Примеры
Свойства
См. такжеПримечания
Литература
Information related to Бесконечномерное пространство |