Россия первой в мире 11 августа 2020 года зарегистрировала вакцину от COVID-19, получившую название «Спутник V». Препарат разработан при поддержке Российского фонда прямых инвестиций (РФПИ) Национальным исследовательским центром эпидемиологии и микробиологии имени Н. Ф. Гамалеи.
Начатая до начала пандемии COVID‑19 разработка вакцин против коронавирусных заболеваний, таких как тяжёлый острый респираторный синдром (SARS) и ближневосточный респираторный синдром (MERS), позволила сформировать знания о структуре и функции коронавирусов; эти знания позволили ускорить разработку различных вакцинных технологий в начале 2020 года[1].
По состоянию на 20 августа 2021 года 112 вакцин-кандидатов находились на стадии клинических исследований, и 184 — на стадии доклинических исследований. Над 2 вакцинами-кандидатами работы были прекращены[3].
Многие страны внедрили планы поэтапной вакцинации населения. По этим планам приоритет отдаётся тем, кто подвержен наибольшему риску осложнений, например, пожилым людям и тем, кто подвержен высокому риску заражения и передачи, например, медицинским работникам[4].
Эффективных и безопасных вакцин против ТОРС и БВРС нет, есть только наработки. Против БВРС (возбудитель MERS-CoV) есть одна вакцина GLS-5300 на базе ДНК, прошедшая первую фазу клинических испытаний на людях[8], две вакцины на векторах аденовируса (ChAdOx1-MERS оксфордского университета и БВРС-ГамВак-Комби НИЦЭМ имени Гамалеи) и одна на векторе MVA MVA-MERS-S[9].
Разработка вакцины против COVID-19
Штаммы вируса SARS-CoV-2, вызывающего опасное инфекционное заболевание — COVID-19, впервые обнаружили в декабре 2019 года[10]. Геном вируса первыми полностью расшифровали службы здравоохранения Китая, 10 января его сделали публично доступным. 20 января 2020 года в китайской провинции Гуандун была подтверждена передача вируса от человека к человеку. 30 января 2020 года в связи со вспышкой эпидемии ВОЗ объявила чрезвычайную ситуацию международного значения в области здравоохранения, а 28 февраля 2020 года ВОЗ повысила оценку рисков на глобальном уровне с высоких на очень высокие. 11 марта 2020 года эпидемия была признана заболеванием с признаками пандемии.
Многие организации используют опубликованные геномы для разработки возможных вакцин против SARS-CoV-2[11][12]. На 18 марта 2020 в работе принимали участие около 35 компаний и академических учреждений[13], причём три из них получали поддержку от Коалиции за инновации в области обеспечения готовности к эпидемиям (CEPI), в том числе проекты биотехнологических компаний Moderna[14] и Inovio Pharmaceuticals, а также Университета Квинсленда[15].
По состоянию на март 2020 года велось около 300 исследований[16]. До 23 апреля 2020 года в список перспективных разработок ВОЗ были включены 83 препарата, из которых 77 находились на стадии доклинических исследований и шесть проходили клинические исследования на людях[17].
Первую вакцину от коронавируса Convidicea зарегистрировали в Китае для вакцинации военнослужащих, это произошло 25.06.2020[18]. Первую общедоступную вакцину «Гам-КОВИД-Вак» (Спутник V) зарегистрировали в России 11.08.2020[19].
Сроки разработки
Типичная схема разработки и испытания вакцины в России состоит из множества этапов, причём этап производства вакцины и этап вакцинации протекают параллельно. От исследования вируса до производства вакцины по такой схеме может уйти от 10 до 15 лет[20].
Типичные этапы разработки и тестирования вакцин в России[21]
Базовые исследования
Базовые лабораторные исследования возбудителя Выбор первоначальной конструкции препарата
Высокая распространённость заболевания, из-за которой различия между группами вакцины и плацебо в испытаниях начинают достаточно быстро проявляться, новые технологии, предыдущий опыт создания вакцин против родственных вирусов, быстрое реагирование регулирующих органов на данные об эффективности вакцин и международное сотрудничество позволяют производить вакцины намного быстрее[22]. В этом случае процесс производства возможен уже на стадии клинических испытаний.
Вакцины от COVID-19, над которыми работают учёные во всем мире, разрабатываются на разных технологических платформах, у каждой из которых есть преимущества и недостатки.
Инактивированные вакцины получают путём выращивания SARS-CoV-2 в культуре клеток, обычно на клетках Vero, с последующей химической инактивацией вируса. Их можно производить относительно легко, однако их выход может быть ограничен продуктивностью вируса в культуре клеток и потребностью в производственных мощностях с высоким уровнем биобезопасности. Эти вакцины обычно вводятся внутримышечно и могут содержать квасцы (гидроксид алюминия) или другие адъюванты. Поскольку весь вирус представлен иммунной системе, иммунный ответ, вероятно, будет нацелен не только на спайковый белок SARS-CoV-2, но также на матрикс, оболочку и нуклеопротеин. Примерами зарегистрированных инактивированных вакцин являются CoronaVac (Sinovac, Китай), Covaxin (Bharat Biotech, Индия), Sinopharm (Sinopharm/Институт биологических препаратов Уханя, Китай), КовиВак (Центр Чумакова, Россия), BBIBP-CorV (Sinopharm/Институт биологических препаратов Пекина, Китай).
Живые аттенуированные вакцины получают путём создания генетически ослабленной версии вируса, которая реплицируется в ограниченной степени, не вызывая заболевания, но вызывая иммунный ответ, подобный тому, который вызывается естественной инфекцией. Ослабление может быть достигнуто путём адаптации вируса к неблагоприятным условиям (например, рост при более низкой температуре, рост в нечеловеческих клетках) или путём рациональной модификации вируса (например, деоптимизация кодонов или удаление генов, ответственных за противодействие распознаванию врождённого иммунитета). Важным преимуществом этих вакцин является то, что их можно вводить интраназально, после чего они вызывают иммунную реакцию слизистых оболочек верхних дыхательных путей — главных входных ворот вируса. Кроме того, поскольку вирус реплицируется у вакцинированного индивидуума, иммунный ответ, вероятно, будет воздействовать как на структурные, так и на неструктурные вирусные белки посредством антител и клеточных иммунных ответов. Однако к недостаткам этих вакцин относятся проблемы безопасности и необходимость модификации вируса, что требует много времени, если проводится традиционными методами, и техническая сложность, если используется обратная генетика. Примерами живой аттенуированной вакцины служат BCG vaccine (Мельбурнский университет/Университет Неймегена, Нидерланды/США/Австралия) и COVI-VAC (Codagenix/Институт сыворотки Индии, США/Индия), находящиеся на стадии клинических испытаний.
Векторные, нереплицирующиеся (в том числе аденовирусные) представляют большую группу вакцин, находящихся в разработке. Такие вакцины обычно основаны на другом вирусе, который был сконструирован для экспрессии белка-шипа и был отключён от репликации in vivo из-за делеции частей его генома. Большинство этих подходов основаны на аденовирусных векторах (AdV), хотя также используются модифицированные вирусы Анкара[нем.] (MVA), векторы вируса парагриппа человека, вирус гриппа, аденоассоциированный вирус и вирус Сендай. Большинство этих векторов вводятся внутримышечно, проникают в клетки вакцинированного человека и затем экспрессируют спайковый белок, на который реагирует иммунная система хозяина. Эти подходы имеют много преимуществ. Нет необходимости иметь дело с живым SARS-CoV-2 во время производства, существует значительный опыт производства больших количеств некоторых из этих векторов (первичная буст-вакцина на основе Ad26-MVA против вируса Эбола создана много лет назад), и векторы демонстрируют хорошую стимуляцию ответов как В-клеток, так и Т-клеток. Недостатком является то, что некоторые из этих векторов поражаются и частично нейтрализуются уже существующим векторным иммунитетом. Этого можно избежать, используя типы векторов, которые либо редки у людей, либо происходят от вирусов животных, либо используя вирусы, которые сами по себе не вызывают особого иммунитета (например, аденоассоциированные вирусы). Кроме того, иммунитет к векторам может быть проблематичным при использовании схем прайм-буста, хотя этого можно избежать, используя праймирование одним вектором и бустирование другим вектором. Примерами зарегистрированных нереплицирующихся векторных вакцин являются Гам-КОВИД-Вак (Спутник V) (Центр Гамалеи, Россия), Convidicea (CanSino Biologics, Китай), AZD1222 (Oxford/AstraZeneca) (AstraZeneca/Оксфордский университет, Швеция/Великобритания), COVID-19 Vaccine Janssen (Johnson & Johnson, Нидерланды/США)[23].
Векторные, реплицирующиеся обычно происходят из аттенуированных или вакцинных штаммов вирусов, которые были сконструированы для экспрессии трансгена, в данном случае белка-шипа. В некоторых случаях также используются вирусы животных, которые не размножаются и не вызывают заболеваний у людей. Такой подход может привести к более устойчивой индукции иммунитета, поскольку вектор в некоторой степени распространяется у вакцинированного человека и часто также вызывает сильный врождённый иммунный ответ. Некоторые из этих векторов также можно вводить через поверхности слизистых оболочек, что может вызвать иммунный ответ. Как пример — вектор на основе вируса гриппа, разрабатываемый Пекинским институтом биологических продуктов. В настоящее время находится в разработке DelNS1-2019-nCoV-RBD-OPT1 (Университет Сямынь, Китай), зарегистрированные отсутствуют.
Векторные, инактивированные. Некоторые вакцины-кандидаты от SARS-CoV-2, которые в настоящее время находятся в стадии разработки, основаны на вирусных векторах, которые отображают спайковый белок на своей поверхности, но затем инактивируются перед использованием. Преимущество этого подхода заключается в том, что процесс инактивации делает векторы более безопасными, поскольку они не могут реплицироваться даже в хозяине с ослабленным иммунитетом. Используя стандартные вирусные векторы, нелегко контролировать количество антигена, который представлен иммунной системе, однако в вакцинах с инактивированными векторами его можно легко стандартизировать, как в случае вакцин с инактивированными или рекомбинантными белками. Эти технологии в настоящее время находятся на доклинической стадии.
ДНК-вакцины основаны на плазмидной ДНК, которая может производиться в больших количествах в бактериях. Обычно эти плазмиды содержат промоторы экспрессии у млекопитающих и ген, кодирующий белок-спайк, который экспрессируется у вакцинированного индивидуума при доставке. Большим преимуществом этих технологий является возможность крупномасштабного производства в E. coli, а также высокая стабильность плазмидной ДНК. Однако ДНК-вакцины часто демонстрируют низкую иммуногенность и должны вводиться с помощью устройств доставки, чтобы сделать их эффективными. Это требование к устройствам доставки, таким как электропораторы, ограничивает их использование. Зарегистрированные ДНК-вакцины отсутствуют, на стадии клинических испытаний находятся, например, INO-4800 (Inocio Pharmaceuticals, США/Южная Корея), AG0301-COVID19 (AnGes Inc., Япония), ZyCoV-D (Zydus Cadila, Индия).
РНК-вакцины появились относительно недавно. Подобно ДНК-вакцинам, генетическая информация об антигене доставляется вместо самого антигена, и затем антиген экспрессируется в клетках вакцинированного человека. Можно использовать либо мРНК (модифицированную), либо самореплицирующуюся РНК. Для мРНК требуются более высокие дозы, чем для самореплицирующейся РНК, которая амплифицируется сама, и РНК обычно доставляется через липидные наночастицы. РНК-вакцины показали большие перспективы в последние годы, и многие из них находятся в стадии разработки, например, против вируса Зика или цитомегаловируса. В качестве потенциальных вакцин против SARS-CoV-2 были опубликованы многообещающие результаты доклинических испытаний. Преимущества этой технологии заключаются в том, что вакцину можно производить полностью in vitro. Однако технология является новой, и неясно, с какими проблемами столкнутся в плане крупномасштабного производства и стабильности при долгосрочном хранении, поскольку требуется ультранизкая температура. Кроме того, эти вакцины вводятся путём инъекции и поэтому вряд ли вызовут сильный иммунитет слизистой оболочки. Зарегистрированы и активно применяются Comirnaty (Pfizer/BioNTech/Fosun Pharma, США/Германия/Китай) и Moderna (Moderna/NIAID, США), на стадии клинических испытаний находятся ещё 5 вакцин.
Рекомбинантные белковые вакцины можно разделить на рекомбинантные вакцины на основе спайк-белков, рекомбинантные вакцины на основе RBD (англ.Receptor-binding domain) и вакцины на основе вирусоподобных частиц (англ.VLP, virus-like particle). Эти рекомбинантные белки могут экспрессироваться в различных системах экспрессии, включая клетки насекомых, клетки млекопитающих, дрожжи и растения; вполне вероятно, что вакцины на основе RBD также могут быть экспрессированы в Escherichia coli. Выходы, а также тип и степень посттрансляционных модификаций варьируются в зависимости от системы экспрессии. В частности, для рекомбинантных вакцин на основе шипованных белков модификации, такие как делеция многоосновного сайта расщепления, включение двух (или более) стабилизирующих мутаций и включение доменов тримеризации, а также способ очистки (растворимый белок против экстракции через мембрану) — может влиять на вызванный иммунный ответ. Преимущество этих вакцин состоит в том, что их можно производить не обращаясь с живым вирусом. Кроме того, некоторые вакцины на основе рекомбинантных белков, такие как вакцина FluBlok от гриппа, были лицензированы, и имеется значительный опыт их производства. Есть и недостатки. Спайковый белок относительно сложно экспрессировать, и это, вероятно, повлияет на продуктивность и на то, сколько доз можно получить. RBD легче экспрессировать; однако это относительно небольшой белок, когда он экспрессируется сам по себе, и, хотя сильные нейтрализующие антитела связываются с RBD, у него отсутствуют другие нейтрализующие эпитопы, которые присутствуют на полноразмерном шипе. Это может сделать вакцины на основе RBD более подверженными влиянию антигенного дрейфа, чем вакцины, содержащие полноразмерный спайковый белок. Подобно инактивированным вакцинам, эти кандидаты обычно вводятся путём инъекции, и не ожидается, что они приведут к устойчивому иммунитету слизистой оболочки. Примеры рекомбинантной белковой вакцины — Конвасэл, первая в мире зарегистрированная вакцина против COVID-19 на основе нуклекапсидного белка (ФГУП СПбНИИВС ФМБА России), ЭпиВакКорона (Центр «Вектор», Россия) и ZF2001 (Институт микробиологии, Китай)[24].
Вакцины
Вакцины, разрешённые к применению
Вакцины, зарегистрированные или одобренные как минимум одним национальным регулятором, по состоянию на 23.03.2021 (расположены по дате регистрации или одобрения регулятором)
Примечание: 1. Порядок расположения вакцин-кандидатов и их компаний-разработчиков в таблице соответствует данным ВОЗ. 2. Способ введения вакцины: ВМ — внутримышечно, ПК — подкожно, ВК — внутрикожно, ИН — интраназально, ОР — орально. — завершённые фазы испытаний — незавершённые фазы испытаний
Эффективность вакцины
Под эффективностью вакцины[англ.] (от англ.Vaccine efficacy) подразумевается сокращение случаев заболевания в вакцинированной группе людей по сравнению с не вакцинированной группой[167].
Эффективность вакцины зависит от многих факторов: от преобладающих вариантов вируса, интервала между вакцинациями (интервал времени между первой и второй проставленной дозой), сопутствующих заболеваний, возрастной структуры населения, интервала времени с момента окончания вакцинации и других параметров, таких как соблюдение температурного режима хранения и транспортировки вакцины и т. д.
На начало 2021 года были разработаны несколько вакцин, производители которых заявляли следующие значения эффективности:
Эти значения эффективности были достигнуты при разных условиях. Так регистрацию случаев COVID-19 при клинических исследования тозинамерана BioNTech и Pfizer начинали через 7 дней после проставления второй дозы. Все случаи COVID-19 до этого момента игнорировались. Разработчики от НИЦЭМ им. Н. Ф. Гамалеи при клинических исследованиях вакцины Спутник V начинали регистрировать случаи COVID-19 уже в день инъекции второй дозы, когда защитное воздействие второй дозы вакцины на иммунную систему человека ещё не проявилось.
FDA и EMA установили 50 % в качестве порога эффективности вакцин[168][169].
Количество привитых пациентов со случаями COVID-19 постоянно увеличивается. Так согласно данным еженедельного отчёта Института Роберта Коха по ситуации с COVID-19 в Германии, в симптоматических случаях COVID-19 в возрастной группе пациентов от 18 до 59 лет, доля привитых составляет 50,6 %. А в возрастной группе пациентов старше 60 лет — 65,7 %. Это означает: из всех людей старше 60 лет, заразившихся COVID-19 за последние четыре недели, 65,7 процента были полностью вакцинированы. Уровень вакцинации по Германии для данного периода составлял около 71 %.
Такой рост числа привитых среди заболевших может объясняться ростом доли людей, привитых более 6 месяцев назад. При этом эффективность ревакцинации для возрастной группы 18-59 лет около 90 %, для людей старше 60 лет она превышает 90 %. Кроме того, большое число привитых может защищать часть невакцинированных от риска заражения.
Случаи COVID-19 по возрастным группам, зарегистрированные в Германии в 47—50 календарные недели 2021 года[170]
5 — 11 лет
12 — 17 лет
18 — 59 лет
60 и более лет
Случаи COVID-19 симптоматические из них полностью вакцинированные
53 873 46 (0,1 %)
35 174 3 481 (9,9 %)
232 734 117 859 (50,6 %)
54 019 35 494 (65,7 %)
Случаи COVID-19 с госпитализацией из них полностью вакцинированные
189 2 (1,1 %)
176 16 (9,1 %)
4 355 1 365 (31,3 %)
6 787 3 150 (46,4 %)
Случаи COVID-19 интенсивной терапии из них полностью вакцинированные
5 0 (0,0 %)
6 0 (0,0 %)
603 125 (20,7 %)
1 196 465 (38,9 %)
Случаи COVID-19 с летальным исходом из них полностью вакцинированные
На данный момент в одном из мета-анализов репродуктивное число оценивается в 2,87[172], в более позднем — в 4,08[173], при этом результаты варьируются в зависимости от стран и методов измерения. Новые штаммы имеют повышенное репродуктивное число[174].
Перспективы достижения коллективного иммунитета
Для достижения коллективного иммунитета придётся преодолеть множество препятствий[175][176]:
Возникают новые штаммы коронавируса, более заразные или более устойчивые к вакцинации.
Производство вакцин технологически сложно и требует постоянных поставок множества компонентов. Если какие-то поставки прекратятся, процесс встанет.
Трудно найти большое количество людей, достаточно компетентных для создания вакцин.
Право на интеллектуальную собственность препятствует свободному обмену информацией о методах производства компонентов вакцин.
Экономическое неравенство помешает привить весь мир. Страны Африки закупают вакцины или получают их в рамках благотворительности намного медленнее развитых стран.
Эффективные мРНК-вакцины требуют хранения в крайне холодных условиях, их транспортировка затруднительна.
Кража вакцин и продажа поддельных препаратов на чёрном рынке также могут стать препятствиями для кампании вакцинации.
Многие люди не хотят вакцинироваться, даже если прививка им доступна.
В журнале Nature была выпущена статья «5 причин, по которым коллективный иммунитет к COVID, вероятно, невозможен». Среди этих причин были перечислены нехватка данных о том, как вакцины влияют на распространение вируса, а не симптомы COVID-19, неравномерное распределение вакцин, появление новых штаммов, неизвестная продолжительность иммунитета, возможное увеличение распространённости неосторожного поведения среди привитых[177].
В другой статье в том же журнале был проведён опрос эпидемиологов по поводу возможного будущего сосуществования с коронавирусом. 39 % экспертов считают, что в некоторых странах искоренить коронавирус возможно. При этом сценарии коронавирус станет вирусом эндемическим, то есть будет ещё много лет циркулировать в определённых регионах планеты. Время от времени вспышки будут перекидываться из эндемических регионов и на привитые страны. В более пессимистическом сценарии коронавирус ещё долго будет циркулировать по всему миру, но за счёт того, что вакцины хорошо защищают привитых от серьёзных случаев заболевания, в конечном итоге он станет чем-то вроде сезонного гриппа[178].
Антивакцинаторство остаётся важнейшим препятствием на пути к достижению коллективного иммунитета[источник не указан 1121 день]. Хотя вакцинация не гарантирует 100 % защиту от коронавируса, непривитые люди заражаются чаще привитых и более подвержены риску заболеть в тяжёлой форме[179][180]. Высокопоставленные должностные лица из CDC и NIH предоставили обновленную информацию о всплеске госпитализаций и смертей в США из-за COVID-19 и указали, что пандемия коронавируса становится пандемией непривитых. Это утверждение подтверждается данными, показывающими, что в некоторых регионах США во время очередной волны коронавируса более 99 % переболевших COVID-19 в тяжёлой форме были непривитыми[181].
В то же время ещё в августе 2021 года стала известна оценка, которую получило Американское общество инфекционных болезней[англ.]. Оно подсчитало, что коллективный иммунитет будет обеспечен, когда защиту от коронавируса SARS-CoV-2 приобретёт более 90 % населения, но подобный уровень представляется очень маловероятным. Ранее считалось, что пандемия утихнет, как только 60-70 % населения переболеют COVID-19 или будут вакцинированы. Корректировка оценок связана, в частности, с появлением дельта-штамма[182].
Безопасность вакцинации
Безопасность вакцин изучается во время крупных клинических испытаний на десятках тысяч человек, затем побочные эффекты отслеживаются системами мониторинга безопасности[183]. Антипрививочники часто используют данные таких систем (например, американской VAERS) для завышения количества побочных эффектов от вакцинации. Необходимо понимать, что о побочных эффектах в VAERS может заявлять практически кто угодно — точнее, поставщики медицинских услуг, производители вакцин и общественность. На сайте VAERS прямо сказано, что отчёты о побочных эффектах в VAERS не позволяют сделать вывод о существовании причинно-следственной связи между вакцинацией и осложнением[184]. Многие внесённые в VAERS случаи смерти после вакцинации никак не могут быть связаны с прививкой[185][186]. Анализ всех смертей, зарегистрированных в VAERS c 1997 по 2013 год, показал сильное сходство основных причин этих смертей с основными причинами смертей среди населения в целом, и на миллион доз вакцины приходилось всего одно сообщение о смерти. В целом в анализе не было найдено причинно-следственной связи между вакцинацией и смертями[187]. По данным трёх анализов побочных эффектов из VAERS, менее половины из них могут быть с какой-то степенью достоверности связаны с вакцинацией (см. изображение справа). В случае вакцин от коронавируса похоже, что количество смертей после вакцинации, зарегистрированное в VAERS, можно ожидать и случайным образом[188]. Все сообщения о смерти были проанализированы CDC и FDA, и причинно-следственная связь не была обнаружена[189].
Повышенное количество сообщений об осложнениях после новых вакцин, в том числе после вакцин от COVID-19, может объясняться эффектом Вебера: новые медицинские препараты обычно привлекают к себе больше внимания и о побочных эффектах после них поступает больше сообщений[187]. Кроме того, если многие вакцины вводят преимущественно детям, то вакцины от коронавируса чаще вводились пожилым людям. Если 68 % умерших после обычных вакцин — это дети[187], то 80 % умерших после вакцин от коронавируса — это люди старше 60 лет, подверженные особо высокому риску смертности[190].
Эффективность и безопасность вакцин на практике
Россия
Ряд регионов предоставили изданию «Коммерсантъ» данные о проценте заболевших коронавирусом после вакцинации. В Курской области среди полностью привитых «Спутником V» заболело 0,14 %, «ЭпиВакКороной» — 0,2 %, «КовиВаком» — 0,2 %. Среди получивших оба укола «Спутника V» жителей Ульяновской области заболели 0,7 %, «ЭпиВакКороны» — 1,04 %, «КовиВака» — 1,3 %. Среди привитых вакциной «Спутник V» в Санкт-Петербурге заразилось 1,64 %, «КовиВаком» — 0,9 %, «ЭпиВакКороной» — 6 % сделавших оба укола. При этом данные для всех вакцин, кроме «Спутник V», могут быть ненадёжны из-за небольшого числа привитых[191].
В препринте исследования независимой команды учёных в Санкт-Петербурге был сделан вывод о 81 % эффективности вакцины в предотвращении госпитализации и 76 % эффективности в защите от тяжёлых повреждений лёгких. Хотя достоверно неизвестно, какой вакциной прививались испытуемые и каким штаммом заражались, на момент исследования подавляющее большинство россиян было привито вакциной «Спутник V» и заражалось дельта-штаммом[192][193].
Великобритания
В Великобритании одобрены к использованию 4 вакцины: Pfizer/BioNTech,Moderna, AstraZeneca и Johnson&Johnson. Данные об эффективности вакцин по состоянию на 19 августа 2021 года приведены в таблице ниже. По данным системы Жёлтых карточек, до 11 августа 2021 года на 1000 прививок приходилось 3-7 сообщений о возможных побочных эффектах. Подавляющее большинство побочных реакций безобидны — это боль, усталость, тошнота и и т. д. Среди опасных и очень редких побочных реакций — анафилаксия, тромбоцитопения (14,9 на миллион доз AstraZeneca), синдром капиллярной утечки (11 случаев у привитых AstraZeneca), миокардит (5/1000000 доз Pfizer, 16,6/1000000 доз Moderna) и перикардит (4,3/1000000 доз Pfizer, 14/1000000 доз Moderna), отёк лица у привитых Pfizer и Moderna с кожными наполнителями. Количество случаев паралича Белла не превышало естественную распространённость этого состояния в популяции. Распространённость нарушений менструального цикла после вакцины также была невелика по сравнению с количеством привитых и естественной распространённостью этих состояний. Не было найдено связи вакцин с осложнениями при родах, выкидышами, мертворождениями, врождёнными аномалиями[194].
Эффективность различных вакцин в Великобритании (19 августа 2021)[195]
Исход
Эффективность вакцины
Pfizer
AstraZeneca
1 доза
2 дозы
1 доза
2 дозы
Симптоматическое заболевание
55-70 %
85-95 %
55-70 %
70-85 %
Госпитализация
75-85 %
90-99 %
75-85 %
80-99 %
Смерть
70-85 %
95-99 %
75-85 %
75-99 %
Заражение (включая бессимптомное)
55-70 %
70-90 %
55-70 %
65-90 %
Распространение заболевания
45-50 %
-
35-50 %
-
США
Центры по контролю и профилактике заболеваний США выпустили несколько исследований эффективности вакцинации[196]. Так, в проспективном исследовании 3950 медицинских работников эффективность мРНК вакцин (Pfizer и Moderna) составила 90 %[197]. В ещё одном исследовании вакцина снизила риск госпитализации среди людей старше 65 лет на 94 %[198]. В третьем исследовании эффективность вакцин для предотвращения заражения вирусом у жителей домов престарелых составила 74,7 % в начале программы вакцинации и 53,1 % после распространения штамма Дельта[199].
Центры по контролю и профилактике заболеваний США заявляют, что вакцины, применяемые в США, безопасны и проходят самый тщательный в истории США мониторинг безопасности. Было выявлено лишь два тяжёлых побочных эффекта: анафилаксия и тромбоз с синдромом тромбоцитопении после вакцины Johnson & Johnson. Тромбоз встречается с частотой 7 на миллион доз у женщин в возрасте 18-49 лет[183]. Анафилаксия встречается с частотой 2,8/1000000[200].
Израиль
Хотя ранее в исследованиях из Израиля эффективность двух доз Pfizer превышала 90 %[201][202], после появления в стране Дельта-варианта эффективность вакцины снизилась до 64 %, хотя эффективность против госпитализации и тяжёлых случаев коронавируса осталась высокой[203].
Болгария
В настоящее время в Болгарии к применению одобрены к использованию 4 вакцины: Pfizer/BioNTech,Moderna, AstraZeneca и Johnson&Johnson. При этом иностранцам разрешено въезжать в Болгарию также при наличии сертификата о вакцинации «Спутником V»[204]. По данным единого портала Министерства здравоохранения Болгарии 95 % умерших от коронавируса за последнее время граждан не были вакцинированы[205].
Аргентина
В Аргентине сообщалось о 45 728 побочных эффектах — 357,22/100 тыс. доз. Данные о безопасности различных вакцин приведены в таблице ниже. Был сделан вывод о высокой безопасности вакцин, применяемых в Аргентине. Среди пожилых (лиц старше 60 лет) одна доза вакцин Спутник V и AstraZeneca снижали смертность на 70-80 %, две дозы — на 90 %[206].
Количество побочных эффектов от вакцин в Аргентине (по состоянию на 2 июня 2021)[207]
Вакцина
Спутник V
Covishield/ AstraZeneca
Sinopharm
Всего
Введено доз
6 964 344
2 305 351
3 531 420
12 801 115
Побочные эффекты на 100 тыс. доз
580,74
153,69
49,27
357,22
Тяжёлые побочные эффекты на 100 тыс. доз
2,78
3,07
1,19
2,39
Вакцинация для переболевших
В двух обзорах исследований был сделан вывод, что введение одной дозы вакцины после болезни приводит к существенному росту титров антител — более того, они могут превышать титры антител, обнаруженные у людей, привитых обеими дозами вакцины или переболевших и непривитых[208][209].
Кроме того, прививка улучшает иммунный ответ против вирусов Альфа, Бета и Дельта штаммов[210][211][212], что важно, учитывая их способность уходить от иммунного ответа и повышенную вероятность реинфицирования после заражения штаммом Дельта[213].
В исследовании CDC был сделан вывод, что вакцинация понижает вероятность реинфицирования в 2,34 раза[214].
В конце 2020 года три крупнейших производителя вакцин (AstraZeneca, Pfizer/BioNTech и Moderna) заявили, что к концу 2021 года они вместе смогут произвести 5,3 миллиарда доз вакцины. Теоретически, этого хватило бы на вакцинацию около 3-х миллиардов человек, то есть на одну треть населения земного шара. Однако большая часть этой вакцины уже зарезервирована. Так, 27 стран, входящих в Евросоюз, а также 4 другие страны (США, Канада, Великобритания и Япония) вместе взятые заблаговременно зарезервировали большую часть, причём зарезервировали с большим запасом. Так, Канада предусмотрела со всеми опциями до 9 доз вакцины на человека, США — более 7 доз вакцины на человека, страны Евросоюза — 5 доз[218].
Проблема заключается в том, что вышеуказанные страны, зарезервировав около двух трети доступной вакцины, имеют население всего 13 % от мирового.
Вакцина Спутник V российского изготовления по состоянию на июнь 2021 года произведена и использована в объёме 24 млн доз, при этом фондом РФПИ заключены соглашения на её производство в других странах в объёме 1,24 млрд доз для 620 млн человек: в том числе в Индии на площадках Hetero, Gland Pharma, Stelis Biopharma, Virchow Biotech и Panacea Biotec — около 852 млн доз, на площадках TopRidge Pharma, Shenzhen Yuanxing Gene-tech и Hualan Biological Bacterin (Китай) — 260 млн доз, Minapharm (Египет) — 40 млн доз, а также в Республике Корея и Бразилии. Спутник V также будет производиться или уже производится в Беларуси, Казахстане, Иране, Аргентине, Турции, Сербии и Италии[219].
Китайские вакцины
В новогоднем обращении по случаю наступления 2022 года председатель КНРСи Цзиньпин сообщил, что КНР поставила 2 млрд доз вакцин 120 странам и международным организациям[220].
Стоимость
Цена одной дозы (большинство вакцин требуют двух доз на человека)
Производитель
Цена дозы
AstraZeneca
USD 2,15 в ЕС (~ EUR 1,85); USD 3 — 4 в США и Великобритании; USD 5,25 в ЮАР[221]
В риторике представителей государственной власти РФ отмечаются заявления о политической коннотации действий регуляторов ЕС, затягивающих одобрение российской вакцины Спутник V для применения на европейском рынке. При этом категорически отказываются от закупок Спутника V Литва и Польша. Премьер-министр Литвы Ингрида Шимоните назвала вакцину Спутник V «плохим для человечества, гибридным оружием Путина, чтобы разделять и властвовать». Глава канцелярии премьер-министра Польши Михал Дворчик заявил, что Спутник V «используется Россией в политических целях».
В свою очередь, дипломатическая служба ЕС утверждает, что государственные информагентства РФ, в свою очередь, публично принижают качества одобренных в ЕС вакцин, разработанных ведущими западными компаниями (Big Pharma) AstraZeneca, Pfizer, BioNTech, Moderna, Janssen / Johnson&Johnson[219].
Производители вакцины Спутник V заявили, что препятствование одобрению её применения на западных рынках связано с действиями лоббистов «Большой Фармы» (Big Pharma) в национальных и наднациональных органах этих стран. По их мнению, лоббисты нацелены на защиту западных рынков от значительно более дешёвой и ничуть не менее эффективной российской вакцины, учитывая, что российские производители никогда ранее не претендовали на значительные доли рынка вакцин[226].
Опасность использования непроверенных вакцин
25 августа 2020 года в интервью агентству Reuters ведущий американский эксперт по вакцинам Энтони Фаучи предостерёг от использования недостаточно проверенных вакцин:
Единственное, чего не должно быть — это разрешения на экстренное использование[англ.] вакцины до того, как появятся доказательства её эффективности. Преждевременная регистрация одной из вакцин может затруднить привлечение людей для испытаний других вакцин. Для меня крайне важно, чтобы вы окончательно показали, что вакцина безопасна и эффективна.
Оригинальный текст (англ.)
The one thing that you would not want to see with a vaccine is getting an EUA (emergency use authorization) before you have a signal of efficacy.
One of the potential dangers if you prematurely let a vaccine out is that it would make it difficult, if not impossible, for the other vaccines to enroll people in their trial.
To me, it's absolutely paramount that you definitively show that a vaccine is safe and effective.
Заявление было сделано в связи с тем, что президент США Дональд Трамп предоставил экстренное разрешение на лечение заражённых SARS-CoV-2 при помощи переливания плазмы крови ещё до проверки и оценки этого метода клиническими испытаниями[227][228].
Против вакцинации всеми указанными вакцинами в период эпидемии коронавируса активно выступает известный вирусолог, лауреат Нобелевской премии в области медицины и физиологии 2008 года Люк Монтанье. Ранее Люк Монтанье обвинялся в поддержке псевдонаучной теории памяти воды и антивакцинаторства[229].
По данным отчёта Center for Countering Digital Hate[англ.], многие антипрививочники восприняли пандемию коронавируса как возможность распространить свои убеждения среди большого количества людей и создать долговременное недоверие к эффективности, безопасности и необходимости вакцин. Онлайн-аудитория антивакцинаторов растёт, социальные сети, несмотря на их усилия по борьбе с дезинформацией, не справляются с усилиями по продвижению псевдонаучных теорий. Задача антипрививочников — донести до людей 3 послания: коронавирус не опасен, вакцины опасны, защитникам вакцинации нельзя доверять. Особую роль в антипрививочном движении играют конспирологи и люди, зарабатывающие деньги на продвижении альтернативной медицины в качестве альтернативы прививкам[230].
По мнению главного редактора блога Science-Based MedicineДэвида Горски[англ.], в антипрививочном движении нет ничего нового, и дезинформация о вакцинах от COVID-19 не нова — старые мифы антипрививочников были просто переделаны для новых вакцин[231].
Распространяющаяся дезинформация о вакцинах от COVID-19, неравенство и неспособность найти точную информацию порождают недоверие к вакцинам, которое может подорвать усилия, направленные на вакцинацию населения. Неуверенность в вакцинации получила достаточно широкое распространение и стала глобальной проблемой[232]. Более того, люди, проявляющие нерешительность по отношению к вакцинам, реже носят маску и соблюдают социальную дистанцию[233][234]. Из-за дискриминации, недоверия правительству и органам здравоохранения члены этнических меньшинств, которые более подвержены заражению, с меньшим доверием относятся к вакцинам[235].
Распространённость недоверия к вакцинации в разных странах
Страна
Мета-анализ Qiang Wang, данные до ноября 2020[236]
Страховая компания автоклуба ADAC решила не выплачивать деньги тем, которые пострадали от каких либо прививок, заявив, что это не входит в страховку[239].
«SARS-CoV-2 causes COVID-19, and developing a vaccine could save lives and speed economic recovery. The United States is funding multiple efforts to develop vaccines. Developing a vaccine is a complicated process that is costly, typically requires 10 years or more, and has a low success rate, although efforts are underway to accelerate the process». ... «Figure 1. The vaccine development process typically takes 10 to 15 years under a traditional timeline. Multiple regulatory pathways, such as Emergency Use Authorization, can be used to facilitate bringing a vaccine for COVID-19 to market sooner».
↑CDC.COVID-19 Vaccination(амер. англ.). Centers for Disease Control and Prevention (11 февраля 2020). Дата обращения: 4 января 2022. Архивировано 30 декабря 2021 года.
↑CDC.COVID Data Tracker(англ.). Centers for Disease Control and Prevention (28 марта 2020). Дата обращения: 4 января 2022. Архивировано 22 мая 2021 года.
↑Ярослава Плаксина. [Американские врачи сомневаются в достижении коллективного иммунитета от COVID-19] // Коммерсантъ, 16.08.2021.
↑ 12CDC.COVID-19 Vaccination(амер. англ.). Centers for Disease Control and Prevention (11 февраля 2020). Дата обращения: 23 августа 2021. Архивировано 10 мая 2021 года.
↑VAERS - Data (неопр.). vaers.hhs.gov. Дата обращения: 3 сентября 2021. Архивировано 4 сентября 2021 года.
↑CDC.COVID-19 Vaccination(амер. англ.). Centers for Disease Control and Prevention (11 февраля 2020). Дата обращения: 3 сентября 2021. Архивировано 23 ноября 2021 года.