Зонная теорияЗо́нная тео́рия твёрдого те́ла — квантовомеханическая теория движения электронов в твёрдом теле. Свободные электроны в вакууме могут иметь любую энергию — их энергетический спектр непрерывен. Однако, электроны, принадлежащие изолированным атомам, в соответствии с квантовомеханическими представлениями, имеют определённые дискретные значения энергии. В твёрдом теле энергетический спектр электронов существенно иной, он состоит из отдельных разрешённых энергетических зон, разделённых зонами запрещённых энергий. Физические основы зонной теорииСогласно постулатам Бора, в изолированном атоме энергия электрона может принимать строго дискретные значения (также говорят, что электрон находится на одной из орбиталей). В случае нескольких атомов, объединённых химической связью (например, в молекуле), электронные орбитали расщепляются в количестве, пропорциональном числу атомов, образуя так называемые молекулярные орбитали. При дальнейшем увеличении системы до макроскопического кристалла (число атомов более 1020), количество орбиталей становится очень большим, а разница энергий электронов, находящихся на соседних орбиталях, соответственно очень маленькой, энергетические уровни сливаются в практически непрерывные дискретные наборы — энергетические зоны. Наивысшая из разрешённых энергетических зон в полупроводниках и диэлектриках, в которой при температуре 0 К все уровни энергии заняты электронами, называется валентной зоной, следующая за ней — зоной проводимости. В металлах зоной проводимости называется разрешённая зона с наивысшей энергией, в которой находятся электроны при температуре 0 К. В основе зонной теории лежат следующие главные приближения[1]:
Ряд явлений, по существу многоэлектронных, таких как ферромагнетизм, сверхпроводимость, и таких, где существенны экситоны, не может быть последовательно рассмотрен в рамках зонной теории. Вместе с тем, при более общем подходе к построению теории твёрдого тела оказалось, что многие результаты зонной теории богаче её исходных предпосылок. Расположение зон в материалах разных типовВ различных веществах, а также в различных формах одного и того же вещества, энергетические зоны располагаются по-разному. По взаимному расположению этих зон вещества делят на три большие группы (см. рисунок 2):
Разделение веществ на полупроводники и диэлектрики весьма условно, потому материалы с шириной запрещённой зоны более 3—4 эВ и менее 4—5 эВ иногда относят к широкозонным полупроводникам — материалам, совмещающим свойства и диэлектриков и полупроводников. К широкозонным полупроводникам относят алмаз (5—6 эВ), GaN (3,4 эВ), ZnS (3,56 эВ), ZnO (3,4 эВ). В то же время к диэлектрикам обычно относят TiO2 (3,0 эВ), Та2О5 (4,4 эВ), Al2O3 (~7 эВ), SiO2 (~9 эВ), HfO2 (~5,4 эВ) и многие другие. При достаточно высоких температурах все диэлектрики приобретают полупроводниковый механизм электропроводности. Отнесение вещества к тому или иному классу больше зависит от способа использования или предмета изучения вещества тем или иным автором. Иногда в классе полупроводников выделяют подкласс узкозонных полупроводников — с шириной запрещённой зоны менее 1 эВ. Зонная теория является основой современной теории твёрдых тел. Она позволила понять природу и объяснить важнейшие свойства проводников, полупроводников и диэлектриков. Величина запрещённой зоны между валентной зоной и зоной проводимости является ключевой величиной в зонной теории, она определяет оптические и электрические свойства материала. Поскольку одним из основных механизмов передачи электрону энергии является тепловой, проводимость полупроводников очень сильно зависит от температуры. Также проводимость можно увеличить, создав разрешённый энергетический уровень в запрещённой зоне путём легирования. C помощью легирования создаются все полупроводниковые приборы: солнечные элементы (преобразователи света в электричество), диоды, транзисторы, полупроводниковые лазеры и другие. Переход электрона из валентной зоны в зону проводимости называют процессом генерации носителей заряда (отрицательного — электрона, и положительного — дырки), обратный переход — процессом рекомбинации. Структура зон и методы её расчётаОтнесение энергии к разрешённой зоне предполагает, что в состоянии с каким-либо волновым вектором электрон обладает такой энергией. Для вакуума соотношение имеет простой вид (здесь — масса свободного электрона, — редуцированная постоянная Планка). Зависимости для твёрдого тела значительно сложнее и характеризуются анизотропией, поэтому в полном виде их можно задать только массивом чисел. Кроме того, обычно существует не одна, а ряд зависимостей Для наиболее важных кристаллографических направлений могут быть построены графики (см. пример на рисунке 3). Таким образом, и зона проводимости, и валентная зона имеют сложную структуру и объединяют сразу несколько -ветвей. Энергетический спектр электронов в кристалле в одноэлектронном приближении описывается уравнением Шрёдингера:
Нахождение собственных функций и значений уравнения Шрёдингера по сути складывается из двух частей. Первая часть — это определение периодического потенциала, вторая сводится к решению уравнения при данном потенциале[3]. Расчёт зонной структуры конкретных полупроводников крайне затруднён в силу целого ряда причин, и прежде всего потому, что отсутствует аналитическое выражение для Поэтому при любых расчётах в формулах содержатся некоторые параметры, значение которых определяется на основе сравнения с экспериментальными данными. Например, ширина запрещённой зоны определяется только экспериментально[4]. Наиболее широко в конкретных расчётах зонной структуры используются следующие методы[5]:
См. также
Литература
Примечания
Information related to Зонная теория |