Конгруэнтное числоКонгруэ́нтное число — натуральное число, равное площади прямоугольного треугольника со сторонами, длины которых выражаются рациональными числами[1]. Более общее определение включает все положительные рациональные числа с этим свойством[2]. Конгруэнтные числа образуют последовательность
Например, 5 является конгруэнтным числом, поскольку оно является площадью треугольника со сторонами 20/3, 3/2 и 41/6. Таким же образом, число 6 является конгруэнтным, поскольку оно является площадью треугольника со сторонами 3,4 и 5. 3 не является конгруэнтным. Если q является конгруэнтным числом, то s2q тоже является конгруэнтным для некоторого числа s (просто умножим каждую сторону треугольника на s), обратное тоже верно. Это приводит к наблюдению, что является ли ненулевое рациональное число q конгруэнтным числом, зависит только от его смежного класса в группе
Любой смежный класс в этой группе содержит в точности одно свободное от квадратов число, поэтому, когда говорят о конгруэнтных числах, имеют в виду только свободные от квадратов положительные целые числа. Задача о конгруэнтном числеПлощадь прямоугольного треугольника через катеты выражается так: Требование прямоугольности треугольника выражается так:
Теорема Ферма о прямоугольном треугольнике, названная в честь Пьера Ферма, утверждает, что никакое квадратное число не может быть конгруэнтным. Однако, в виде утверждения, что любая разность (шаг) между последовательными членами арифметической прогрессии квадратов не является полным квадратом, этот факт был уже известен (без доказательства) Фибоначчи[4]. Любой такой шаг прогрессии является конгруэнтным числом, и любое конгруэнтное число является произведением шага прогрессии на квадрат рационального числа[5]. Однако определение, является ли число шагом прогрессии квадратов, является существенно более простой задачей, поскольку существует параметрическая формула, в которой необходимо проверить лишь конечное число значений параметров[6]. Связь с эллиптическими кривымиВопрос, является ли данное число конгруэнтным, оказывается эквивалентен условию, что некоторая эллиптическая кривая имеет положительный ранг[2]. Альтернативный подход к идее представлен ниже (и может быть найден во введении в работе Таннела). Предположим, что a,b и c — числа (не обязательно положительные или рациональны), которые удовлетворяют следующим условиям: Положим x = n(a+c)/b и y = 2n2(a+c)/b2. Получим и y не равен 0 (если y = 0, то a = -c, так что b = 0, но (1/2)ab = n нулю не равно, противоречие). Обратно, если x и y являются числами, удовлетворяющими уравнениям выше, и y не равен 0, положим a = (x2 — n2)/y, b = 2nx/y, и c = (x2 + n2)/y. Вычисления показывают, что эти три числа удовлетворяют двум уравнениям выше. Соответствие между (a,b,c) и (x,y) обратимо, так что мы имеем взаимно-однозначное соответствие между решениями этих двух уравнений для a, b и c и решениями для x и y, где y не равен нулю. В частности, из формул для a, b и c следует, что для рационального n числа a, b и c рациональны тогда и только тогда, когда соответствующие x и y рациональны, и наоборот. (Мы также получаем, что a, b и c положительны тогда и только тогда, когда x и y положительны. Из уравнения y2 = x3 — xn2 = x(x2 — n2) заметим, что если x и y положительны, то x2 — n2 должно быть положительно, так что формула выше для a даст положительное число.) Таким образом, положительное рациональное число n конгруэнтно тогда и только тогда, когда y2 = x3 — n2x имеет рациональную точку[англ.] с неравным нулю y. Можно показать (как изящное следствие теоремы Дирихле о простых числах в арифметической прогрессии), что только точки кручения этой эллиптической кривой имеют y, равное 0, откуда следует, что существование рациональных точек с ненулевым y эквивалентно утверждению, что эллиптическая кривая имеет положительный ранг. Современное состояниеМножество работ посвящено классификации конгруэнтных чисел. Например, известно[7], что для простого числа p выполняется следующее:
Также известно[8], что в каждом из классов вычетов 5, 6, 7 (mod 8) и любого заданного k имеется бесконечно много свободных от нулей конгруэнтных чисел с k простыми множителями. См. такжеПримечания
Литература
Ссылки
Information related to Конгруэнтное число |