Множество всех примитивных пифагоровых четвёрок, то есть тех, для которых НОД(a,b,c) = 1, имеет параметризацию[2][3][4]
где m, n, p, q — натуральные целые, НОД(m, n, p, q) = 1 и m + n + p + q ≡ 1 (mod 2). Таким образом, все примитивные пифагоровы четвёрки описываются тождеством Лебега[5]
Альтернативная параметризация
Все пифагоровы четвёрки (включая непримитивные и с повторениями) можно получить из двух натуральных чисел a и b следующим образом:
Если и имеют различную чётность, возьмём любой множитель p числа такой, что . Тогда и Заметим, что
Похожий метод существует[6] для чётных с дополнительным ограничением, что должно быть чётным делителем числа Такого метода не существует для случая, когда оба числа a и b нечётны.
Свойства
Наибольшее число, которое всегда делит произведение abcd, равно 12[7]. Четвёрка с минимальным произведением — (1, 2, 2, 3).
Связь с кватернионами и рациональными ортогональными матрицами
где столбцы попарно ортогональны и каждый имеет нормуd. Более того, , и, фактически, все 3 × 3 ортогональные матрицы с рациональными коэффициентами появляются таким образом[8].
↑R. A. Beauregard, E. R. Suryanarayan. Pythagorean boxes // Math. Magazine. — 2001. — Т. 74. — С. 222—227.
↑R. D. Carmichael. Diophantine Analysis. — New York: John Wiley & Sons, 1915. — Т. 16. — (MATHEMATICAL MONOGRAPHS).
↑L. E. Dickson, Some relations between the theory of numbers and other branches of mathematics, in Villat (Henri), ed., Conférence générale, Comptes rendus du Congrès international des mathématiciens, Strasbourg, Toulouse, 1921, pp. 41—56; reprint Nendeln/Liechtenstein: Kraus Reprint Limited, 1967; Collected Works 2, pp. 579—594.