Среднее степенное взвешенное — разновидность среднего значения. Для набора положительных вещественных чисел с параметром и неотрицательными весами определяется как
- .
Если веса нормированы к единице (то есть их сумма равна единице), то выражение для среднего степенного взвешенного принимает вид
- .
Свойства
Связь с энтропией Реньи
Информационную энтропию некоторой системы можно определить как логарифм числа доступных состояний системы (или их эффективного количества, если состояния не равновероятны). Учтём, что вероятности пребывания системы в состоянии с номером () нормированы к . Если состояния системы равновероятны и имеют вероятность , то . В случае разных вероятностей состояний определим эффективное количество состояний как среднее степенное взвешенное от величин с весами и параметром (где ):
- .
Отсюда получаем выражение для энтропии
- ,
совпадающее с выражением для энтропии Реньи[1]. Нетрудно видеть, что в пределе при (или ) энтропия Реньи сходится к энтропии Шеннона (при том, что среднее степенное взвешенное — к среднему геометрическому взвешенному). По определению энтропии Реньи должно соблюдаться дополнительное ограничение (или ).
Примечания
Литература
- Зарипов Р. Г. Новые меры и методы в теории информации. — Казань: Изд-во Казан. гос. техн. ун-та, 2005. — 364 с.