Share to: share facebook share twitter share wa share telegram print page

 

Сумма Минковского

Сумма Минковского синей и зелёной фигуры равна красной фигуре

Суммой Минковского двух подмножеств A и B линейного пространства V (или произвольной группы) называется множество C, состоящее из сумм всевозможных векторов из A и B:

Аналогично определяется произведение множества на число:

Свойства

  • Если множество A выпукло, то
для любых и .

О разности Минковского

Множества с введенной на них суммой Минковского не образуют линейного пространства (даже выпуклые). Это связано с отсутствием обратного элемента (элемент -A, очевидно, таковым не является).

  • Разностью Минковского множеств A и B называется максимальное множество C такое, что
    ,
но легко видеть, что для многих множеств (например, квадрата и круга) разность Минковского не является операцией, обратной к сумме.
  • Альтернативно можно продолжить сумму Минковского на линейное пространство пар выпуклых множеств (A,B) с отношением эквивалентности

Разность Минковского также называют геометрической разностью множеств.

Вариации и обобщения

Литература

Information related to Сумма Минковского

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya