Share to: share facebook share twitter share wa share telegram print page

 

Циклический многогранник

Циклический многогранниквыпуклый многогранник, вершины которого лежат на кривой в .

Конструкция

Пусть и . Выпуклая оболочка точек называется -мерным циклическим многогранником с вершинами и далее обозначается .

Свойства

  • Критерий Гейла: Пусть , и — подмножество из элементов. Гипергрань в соответствует тогда и только тогда, когда между любыми двумя соседними числами в лежит чётное число чисел из .
  • Любые вершин в образуют грань.
    • В частности, любые две вершины 4-мерного циклического многогранника соединены ребром.
  • Число -мерных граней в при равно .
    • Используя тождества Дена — Сомервиля, можно найти число граней старших размерностей.
    • Для любого среди всех -мерных многогранников с вершинами циклические многогранники имеют максимальное число -мерных граней.

Литература

  • В. А. Тиморин. Комбинаторика выпуклых многогранников. — МЦНМО, 2002. — (Летняя школа «Современная математика»). — ISBN 5-94057-024-0.

Information related to Циклический многогранник

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya