Чевиана — отрезок в треугольнике, соединяющий вершину треугольника с внутренней точкой на противоположной стороне[1]. Часто рассматриваются три таких отрезка, пересекающихся в одной точке, которые совместно называются чевианами. Название «чевиана» происходит от имени итальянского инженера Джованни Чевы, доказавшего известную теорему о чевианах, которая носит его имя[2]. Медианы, биссектрисы и высоты треугольника являются специальными случаями чевиан.
Если чевиана является высотой, а потому перпендикулярна стороне, её длина удовлетворяет формулам
и
где полупериметр s = (a+b+c) / 2.
Свойства отношений
Имеются различные свойства пропорций длин, образованных тремя чевианами, проходящими через одну общую внутреннюю точку[4]. Для треугольника на рисунке справа выполняются равенства
Три делителя (пополам) площади треугольника — это его медианы.
Трисектрисы
Если в каждой вершине треугольника проведены две чевианы, делящие углы на три равные части, то шесть чевиан пересекаются попарно, образуя правильный треугольник, называемый треугольником Морли.
Площадь внутреннего треугольника, образованного чевианами
Теорема Рауса определяет отношение площади заданного треугольника к площади треугольника, образованного попарным пересечением трёх чевиан, по одной из каждой вершины.
Vladimir Karapetoff. Some properties of correlative vertex lines in a plane triangle // American Mathematical Monthly. — 1929. — Вып. 36. — С. 476–479.
Indika Shameera Amarasinghe. A New Theorem on any Right-angled Cevian Triangle // Journal of the World Federation of National Mathematics Competitions. — 2011. — Т. 24 (02). — С. 29–37.