Множество всех подмножеств (булеан, показательное множество) — множество, состоящее из всех подмножеств данного множества (включая пустое множество и само множество ); обозначается или (так как оно соответствует множеству отображений из в ).
Если два множества равномощны, то равномощны и соответствующие множества всех подмножеств. Обратное утверждение (то есть инъективность операции для кардиналов) является независимым от ZFC.
Справедливо следующее утверждение: число подмножеств конечного множества, состоящего из элементов, равно . Результат доказывается методом математической индукции. База индукции: у пустого множества () только одно подмножество — оно само, и . Шаг индукции: пусть утверждение установлено для множеств мощности . Рассмотрим произвольное множество с кардинальным числом. Если зафиксировать некоторый элемент, подмножества множества разделяются на два семейства:
, элементы которого содержат ,
, элементы которого не содержат , то есть являются подмножествами множества .
Подмножеств второго типа по предположению индукции , однако подмножеств первого типа ровно столько же. С одной стороны, из каждого подмножества второго типа можно получить подмножество первого типа добавлением элемента . С другой стороны, из каждого подмножества первого типа можно получить подмножество второго типа удалением элемента . Следовательно,