16-Dehydropregnenolone acetate (16-DPA) is a chemical compound used as an intermediate or synthon in the production of many semisyntheticsteroids. As 7-ACA is for cephalosporins and 6-APA is for penicillins, 16-DPA is for steroids. While it is not easy to synthesize, it is a convenient intermediate which can be made from other more available materials, and which can then be modified to produce the desired target compound.
Those marked with a * appear on the WHO Model List of Essential Medicines, some as part of a compound medication. The list is by no means complete due to the central role of 16-DPA in steroid production.
Pharmacology
There are no current medical uses of 16-DPA. Studies in male hamsters show that the related chemical 16-DHP acts as an farnesoid X receptor (FXR) antagonist, consequently up-regulating CYP7A1 and lowering serum cholesterol. The CSIR-CDRI holds a patent over 16-DHP for prospective lipid-lowering use.[8]
History
Production of substantial quantities of steroids was not achieved until the Marker degradation in the late 1930s, a synthesis route converting diosgenin into the related compound 16-dehydropregnenolone (16-DP or 16-DHP). This reaction established Mexico as a world center of steroid production.[9] 16-DPA was produced in a variant of Marker degradation published in 1940.[6]
The earliest PubChem patent record for 16-DPA is US2656364A of 1951, describing its conversion into 17-ketosteroids.[7]
^
"13.4.7 The Crystal Structure of Dehydropregnolone Acetate: A Pregnane". Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds. CRC Press. p. 308.
^ abMarker RE, Krueger J (1940). "Sterols. CXII. Sapogenins. XLI. The Preparation of Trillin and its Conversion to Progesterone". J. Am. Chem. Soc. 62 (12): 3349–3350. Bibcode:1940JAChS..62.3349M. doi:10.1021/ja01869a023.
^Ramakrishna, Rachumallu; Kumar, Durgesh; Bhateria, Manisha; Gaikwad, Anil Nilkanth; Bhatta, Rabi Sankar (1 April 2017). "16-Dehydropregnenolone lowers serum cholesterol by up-regulation of CYP7A1 in hyperlipidemic male hamsters". The Journal of Steroid Biochemistry and Molecular Biology. 168: 110–117. doi:10.1016/j.jsbmb.2017.02.013. PMID28232149. S2CID30520080.