One of the most commonly used in silico approaches for assessing new molecules' activity/property/toxicity is the Quantitative Structure-Activity/Property/Toxicity Relationship (QSAR/QSPR/QSTR), which generates predictive models for efficiently predicting query compounds .[1] QSAR/QSPR/QSTR uses numerical chemical information in the form of molecular descriptors and correlates these to the response activity/property/toxicity using statistical techniques.[2] While QSAR is essentially a similarity-based approach, the occurrence of activity/property cliffs may greatly reduce the predictive accuracy of the developed models.[3] The novel Arithmetic Residuals in K-groups Analysis (ARKA) approach is a supervised dimensionality reduction technique that can easily identify activity cliffs in a data set.[4] Activity cliffs are similar in their structures but differ considerably in their activity. The basic idea of the ARKA descriptors is to group the conventional QSAR descriptors based on a predefined criterion and then assign weightage to each descriptor in each group. ARKA descriptors have also been used to develop classification-based[5] and regression-based[6] QSAR models with acceptable quality statistics.