In the case of ATI the photoelectron peaks should appear at
where the integer n represents the minimal number of photons absorbed, and the integer s represents the number of additional photons absorbed. W is the ionization energy, and is the electron kinetic energy of the peak corresponding to s additional photons being absorbed.[3]
Structure
It typically has a strong maximum at the minimal number of photons to ionize the system, with successive peaks (known as ATI peaks) separated by the photon energy and thus corresponding to higher numbers of photons being absorbed.[1][4]
In the non-perturbative regime the bound states are dressed with the electric field, shifting the ionization energy. If the ponderomotive energy of the field is greater than the photon energy , then the first peak disappears.[3]
Features from ultrashort pulses
High intensity ultrashort pulse lasers can create ATI features with 20 or more peaks.[5] The photoelectron spectrum of electron energies is continuous since actual light sources contain a spread of energies.
References
^ abParker, Jonathan; Clark, Charles W. (February 1, 1996). "Study of a plane-wave final-state theory of above-threshold ionization and harmonic generation". Journal of the Optical Society of America B. 13 (2): 371. Bibcode:1996JOSAB..13..371P. doi:10.1364/JOSAB.13.000371.
^ abGordon W. F. Drake, ed. (2006). Springer handbook of atomic, molecular, and optical physics (Updated and expanded ed.). New York: Springer Science+Business Media. ISBN0-387-20802-X.
^Cormier, E; Lambropoulos, P (May 14, 1996). "Optimal gauge and gauge invariance in non-perturbative time-dependent calculation of above-threshold ionization". Journal of Physics B: Atomic, Molecular and Optical Physics. 29 (9): 1667–1680. Bibcode:1996JPhB...29.1667C. doi:10.1088/0953-4075/29/9/013. S2CID250907316.