Cocamidopropyl betaine (CAPB) is a mixture of closely related organic compounds derived from coconut oil and dimethylaminopropylamine.[2] CAPB is available as a viscous pale yellow solution and it is used as a surfactant in personal care products and animal husbandry. The name reflects that the major part of the molecule, the lauric acid group, is derived from coconut oil. Cocamidopropyl betaine to a significant degree has replaced cocamide DEA.
Production
Despite the name cocamidopropyl betaine, the molecule is not synthesized from betaine. Instead it is produced in a two-step manner, beginning with the reaction of dimethylaminopropylamine (DMAPA) with fatty acids from coconut or palm kernel oil (lauric acid, or its methyl ester, is the main constituent). The primary amine in DMAPA is more reactive than the tertiary amine, leading to its selective addition to form an amide. In the second step chloroacetic acid reacts with the remaining tertiary amine to form a quaternary ammonium center (a quaternization reaction).[3]
CAPB is also used as a co-surfactant with Sodium dodecyl sulfate for promoting the formation of gas hydrates.[8] CAPB, as an additive, helps to scale up the gas hydrates' formation process.[9]
CAPB is obtained as an aqueous solution in concentrations of about 30%.
Typical impurities of leading manufacturers today:
The impurities AA and DMAPA are most critical, as they have been shown to be responsible for skin sensitization reactions. These by-products can be avoided by a moderate excess chloroacetate and the exact adjustment of pH value during betainization reaction accompanied by regular analytical control.
Safety
CAPB has been claimed to cause allergic reactions in some users,[5][6][7] but a controlled pilot study has found that these cases may represent irritant reactions rather than true allergic reactions.[10] Furthermore, results of human studies have shown that CAPB has a low sensitizing potential if impurities with amidoamine (AA) and dimethylaminopropylamine (DMAPA) are low and tightly controlled.[11][12] Other studies have concluded that most apparent allergic reactions to CAPB are more likely due to amidoamine.[13][14] Cocamidopropyl betaine was voted 2004 Allergen of the Year by the American Contact Dermatitis Society.[15]
^Christian Nitsch, Hans-Joachim Heitland, Horst Marsen, Hans-Joachim Schlüussler, "Cleansing Agents" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a07_137
^Stephen A. Lawrence (2004). Amines: Synthesis, Properties and Applications. Cambridge University Press. p. 281.
^Reich, Charles (1997). "Hair Cleansers". In Martin M. Rieger; Linda D. Rhein (eds.). Surfactants in Cosmetics. Surfactant Science Series. Vol. 68 (2nd ed.). New York: Marcel Dekker, Inc. p. 359. ISBN978-0-8247-9805-5. Retrieved 9 December 2012.
^Shaffer, K. K.; Jaimes, J. P.; Hordinsky, M. K.; Zielke, G. R.; Warshaw, E. M. (2006). "Allergenicity and cross-reactivity of coconut oil derivatives: A double-blind randomized controlled pilot study". Dermatitis: Contact, Atopic, Occupational, Drug. 17 (2): 71–76. PMID16956456.
^Fowler Jr, J. F.; Zug, K. M.; Taylor, J. S.; Storrs, F. J.; Sherertz, E. A.; Sasseville, D. A.; Rietschel, R. L.; Pratt, M. D.; Mathias, C. G.; Marks, J. G.; Maibach, H. I.; Fransway, A. F.; Deleo, V. A.; Belsito, D. V. (2004). "Allergy to cocamidopropyl betaine and amidoamine in North America". Dermatitis: Contact, Atopic, Occupational, Drug. 15 (1): 5–6. PMID15573641. Archived from the original on 2022-06-25. Retrieved 2022-06-24.
^Korting, H. C.; Parsch, E. M.; Enders, F.; Przybilla, B. (1992). "Allergic contact dermatitis to cocamidopropyl betaine in shampoo". Journal of the American Academy of Dermatology. 27 (6 Pt 1): 1013–1015. doi:10.1016/S0190-9622(08)80270-8. PMID1479082.
^Foti, C.; Bonamonte, D.; Mascolo, G.; Corcelli, A.; Lobasso, S.; Rigano, L.; Angelini, G. (2003). "The role of 3-dimethylaminopropylamine and amidoamine in contact allergy to cocamidopropylbetaine". Contact Dermatitis. 48 (4): 194–198. doi:10.1034/j.1600-0536.2003.00078.x. PMID12786723. S2CID9944011.
^Fowler, J. F.; Fowler, L. M.; Hunter, J. E. (1997). "Allergy to cocamidopropyl betaine may be due to amidoamine: A patch test and product use test study". Contact Dermatitis. 37 (6): 276–281. doi:10.1111/j.1600-0536.1997.tb02464.x. PMID9455630. S2CID7933812.