Helly spaceIn mathematics, and particularly functional analysis, the Helly space, named after Eduard Helly, consists of all monotonically increasing functions ƒ : [0,1] → [0,1], where [0,1] denotes the closed interval given by the set of all x such that 0 ≤ x ≤ 1.[1] In other words, for all 0 ≤ x ≤ 1 we have 0 ≤ ƒ(x) ≤ 1 and also if x ≤ y then ƒ(x) ≤ ƒ(y). Let the closed interval [0,1] be denoted simply by I. We can form the space II by taking the uncountable Cartesian product of closed intervals:[2] The space II is exactly the space of functions ƒ : [0,1] → [0,1]. For each point x in [0,1] we assign the point ƒ(x) in Ix = [0,1].[3] TopologyThe Helly space is a subset of II. The space II has its own topology, namely the product topology.[2] The Helly space has a topology; namely the induced topology as a subset of II.[1] It is normal Haudsdorff, compact, separable, and first-countable but not second-countable. References
Information related to Helly space |