Share to: share facebook share twitter share wa share telegram print page

 

Helly space

In mathematics, and particularly functional analysis, the Helly space, named after Eduard Helly, consists of all monotonically increasing functions ƒ : [0,1] → [0,1], where [0,1] denotes the closed interval given by the set of all x such that 0 ≤ x ≤ 1.[1] In other words, for all 0 ≤ x ≤ 1 we have 0 ≤ ƒ(x) ≤ 1 and also if xy then ƒ(x) ≤ ƒ(y).

Let the closed interval [0,1] be denoted simply by I. We can form the space II by taking the uncountable Cartesian product of closed intervals:[2]

The space II is exactly the space of functions ƒ : [0,1] → [0,1]. For each point x in [0,1] we assign the point ƒ(x) in Ix = [0,1].[3]

Topology

The Helly space is a subset of II. The space II has its own topology, namely the product topology.[2] The Helly space has a topology; namely the induced topology as a subset of II.[1] It is normal Haudsdorff, compact, separable, and first-countable but not second-countable.

References

  1. ^ a b Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, pp. 127 − 128, ISBN 0-486-68735-X
  2. ^ a b Steen, L. A.; Seebach, J. A. (1995), Counterexamples in Topology, Dover, p. 125 − 126, ISBN 0-486-68735-X
  3. ^ Penrose, R (2005). The Road to Reality: A Complete guide to the Laws of the Universe. Vintage Books. pp. 368 − 369. ISBN 0-09-944068-7.


Gelfand–Shilov space

Information related to Helly space

Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9

Portal di Ensiklopedia Dunia

Kembali kehalaman sebelumnya