Lucid (programming language)
Lucid is a dataflow programming language designed to experiment with non-von Neumann programming models. It was designed by Bill Wadge and Ed Ashcroft and described in the 1985 book Lucid, the Dataflow Programming Language.[1] pLucid was the first interpreter for Lucid. ModelLucid uses a demand-driven model for data computation. Each statement can be understood as an equation defining a network of processors and communication lines between them through which data flows. Each variable is an infinite stream of values and every function is a filter or a transformer. Iteration is simulated by 'current' values and 'fby' (read as 'followed by') operator allowing composition of streams. Lucid is based on an algebra of histories, a history being an infinite sequence of data items. Operationally, a history can be thought of as a record of the changing values of a variable, history operations such as first and next can be understood in ways suggested by their names. Lucid was originally conceived as a disciplined, mathematically pure, single-assignment language, in which verification would be simplified. However, the dataflow interpretation has been an important influence on the direction in which Lucid has evolved.[1] DetailsIn Lucid (and other dataflow languages) an expression that contains a variable that has not yet been bound waits until the variable has been bound, before proceeding. An expression like Each variable in Lucid is a stream of values. An expression
The computation is carried out by defining filters or transformation functions that act on these time-varying streams of data. Examplesfac where n = 0 fby (n + 1); fac = 1 fby ( fac * (n + 1) ); end fib where fib = 0 fby ( 1 fby fib + next fib ); end Total of a Sequencetotal where total = 0 fby total + x end; Running Averagerunning_avg where sum = first(input) fby sum + next(input); n = 1 fby n + 1; running_avg = sum / n; end; prime where prime = 2 fby (n whenever isprime(n)); n = 3 fby n+1; isprime(n) = not(divs) asa divs or prime*prime > N where N is current n; divs = N mod prime eq 0; end; end qsort(a) = if eof(first a) then a else follow(qsort(b0),qsort(b1)) fi where p = first a < a; b0 = a whenever p; b1 = a whenever not p; follow(x,y) = if xdone then y upon xdone else x fi where xdone = iseod x fby xdone or iseod x; end end Data flow diagram--------> whenever -----> qsort --------- | ^ | | | | | not | | ^ | |---> first | | | | | | | V | | |---> less --- | | | | | V V ---+--------> whenever -----> qsort -----> conc -------> ifthenelse -----> | ^ ^ | | | --------> next ----> first ------> iseod -------------- | | | ----------------------------------------------------------- sqroot(avg(square(a))) where square(x) = x*x; avg(y) = mean where n = 1 fby n+1; mean = first y fby mean + d; d = (next y - mean)/(n+1); end; sqroot(z) = approx asa err < 0.0001 where Z is current z; approx = Z/2 fby (approx + Z/approx)/2; err = abs(square(approx)-Z); end; end h where h = 1 fby merge(merge(2 * h, 3 * h), 5 * h); merge(x,y) = if xx <= yy then xx else yy fi where xx = x upon xx <= yy; yy = y upon yy <= xx; end; end; Dataflow DiagramReferences
External linksInformation related to Lucid (programming language) |