This article needs attention from an expert in mathematics or physics. The specific problem is: It is very complex.WikiProject Mathematics or WikiProject Physics may be able to help recruit an expert.(August 2022)
In quantum information theory, the no low-energy trivial state (NLTS) conjecture is a precursor to a quantum PCP theorem (qPCP) and posits the existence of families of Hamiltonians with all low-energy states of non-trivial complexity.[1][2][3][4] It was formulated by Michael Freedman and Matthew Hastings in 2013. NLTS is a consequence of one aspect of qPCP problems – the inability to certify an approximation of local Hamiltonians via NP completeness.[2] In other words, it is a consequence of the QMA complexity of qPCP problems.[5] On a high level, it is one property of the non-Newtonian complexity of quantum computation.[5] NLTS and qPCP conjectures posit the near-infinite complexity involved in predicting the outcome of quantum systems with many interacting states.[6] These calculations of complexity would have implications for quantum computing such as the stability of entangled states at higher temperatures, and the occurrence of entanglement in natural systems.[7][6] A proof of the NLTS conjecture was presented and published as part of STOC 2023.[8]
NLTS property
The NLTS property is the underlying set of constraints that forms the basis for the NLTS conjecture.[citation needed]
The general k-local Hamiltonian problem is, given a k-local Hamiltonian , to find the smallest eigenvalue of .[9] is also called the ground-state energy of the Hamiltonian.
The family of local Hamiltonians thus arises out of the k-local problem. Kliesch states the following as a definition for local Hamiltonians in the context of NLTS:[2]
Let I ⊂ N be an index set. A family of local Hamiltonians is a set of Hamiltonians {H(n)}, n ∈ I, where each H(n) is defined on n finite-dimensional subsystems (in the following taken to be qubits), that are of the form
where each Hm(n) acts non-trivially on O(1) qubits. Another constraint is the operator norm of Hm(n) is bounded by a constant independent of n and each qubit is only involved in a constant number of terms Hm(n).
In physics, topological order[10] is a kind of order in the zero-temperature phase of matter (also known as quantum matter). In the context of NLTS, Kliesch states: "a family of local gapped Hamiltonians is called topologically ordered if any ground states cannot be prepared from a product state by a constant-depth circuit".[2]
Let I be an infinite set of system sizes. A family of local Hamiltonians {H(n)}, n ∈ I has the NLTS property if there exists ε > 0 and a function f : N → N such that
for all n ∈ I, H(n) has ground energy 0,
⟨0n|U†H(n)U|0n⟩ > εn for any depth-d circuit U consisting of two qubit gates and for any n ∈ I with n ≥ f(d).
NLTS conjecture
There exists a family of local Hamiltonians with the NLTS property.[2]
Proving the NLTS conjecture is an obstacle for resolving the qPCP conjecture, an even harder theorem to prove.[1] The qPCP conjecture is a quantum analogue of the classical PCP theorem. The classical PCP theorem states that satisfiability problems like 3SAT are NP-hard when estimating the maximal number of clauses that can be simultaneously satisfied in a hamiltonian system.[7] In layman's terms, classical PCP describes the near-infinite complexity involved in predicting the outcome of a system with many resolving states, such as a water bath full of hundreds of magnets.[6] qPCP increases the complexity by trying to solve PCP for quantum states.[6] Though it hasn't been proven yet, a positive proof of qPCP would imply that quantum entanglement in Gibbs states could remain stable at higher-energy states above absolute zero.[7]
NLETS proof
NLTS on its own is difficult to prove, though a simpler no low-error trivial states (NLETS) theorem has been proven, and that proof is a precursor for NLTS.[11]
Let k > 1 be some integer, and {Hn}n ∈ N be a family of k-local Hamiltonians. {Hn}n ∈ N is NLETS if there exists a constant ε > 0 such that any ε-impostor family F = {ρn}n ∈ N of {Hn}n ∈ N is non-trivial.
References
^ ab"On the NLTS Conjecture". Simons Institute for the Theory of Computing. 2021-06-30. Retrieved 2022-08-07.
^ abcdefKliesch, Alexander (2020-01-23). "The NLTS conjecture"(PDF). Technical University of Munich. Retrieved Aug 7, 2022.