Quotient automatonIn computer science, in particular in formal language theory, a quotient automaton can be obtained from a given nondeterministic finite automaton by joining some of its states. The quotient recognizes a superset of the given automaton; in some cases, handled by the Myhill–Nerode theorem, both languages are equal. Formal definitionA (nondeterministic) finite automaton is a quintuple A = ⟨Σ, S, s0, δ, Sf⟩, where:
A string a1...an ∈ Σ* is recognized by A if there exist states s1, ..., sn ∈ S such that ⟨si-1,ai,si⟩ ∈ δ for i=1,...,n, and sn ∈ Sf. The set of all strings recognized by A is called the language recognized by A; it is denoted as L(A). For an equivalence relation ≈ on the set S of A’s states, the quotient automaton A/≈ = ⟨Σ, S/≈, [s0], δ/≈, Sf/≈⟩ is defined by[2]: 5
The process of computing A/≈ is also called factoring A by ≈. Example
For example, the automaton A shown in the first row of the table[note 2] is formally defined by
It recognizes the finite set of strings { 1, 10, 100 }; this set can also be denoted by the regular expression "1+10+100". The relation (≈) = { ⟨a,a⟩, ⟨a,b⟩, ⟨b,a⟩, ⟨b,b⟩, ⟨c,c⟩, ⟨c,d⟩, ⟨d,c⟩, ⟨d,d⟩ }, more briefly denoted as a≈b,c≈d, is an equivalence relation on the set {a,b,c,d} of automaton A’s states. Building the quotient of A by that relation results in automaton C in the third table row; it is formally defined by
It recognizes the finite set of all strings composed of arbitrarily many 1s, followed by arbitrarily many 0s, i.e. { ε, 1, 10, 100, 1000, ..., 11, 110, 1100, 11000, ..., 111, ... }; this set can also be denoted by the regular expression "1*0*". Informally, C can be thought of resulting from A by glueing state a onto state b, and glueing state c onto state d. The table shows some more quotient relations, such as B = A/a≈b, and D = C/a≈c. Properties
See alsoNotes
References
Information related to Quotient automaton |