In geometry, the small retrosnub icosicosidodecahedron (also known as a retrosnub disicosidodecahedron, small inverted retrosnub icosicosidodecahedron, or retroholosnub icosahedron) is a nonconvex uniform polyhedron, indexed as U72. It has 112 faces (100 triangles and 12 pentagrams), 180 edges, and 60 vertices.[1] It is given a Schläfli symbol sr{⁵/₃,³/₂}.
The 40 non-snub triangular faces form 20 coplanar pairs, forming star hexagons that are not quite regular. Unlike most snub polyhedra, it has reflection symmetries.
Let be the smallest (most negative) zero of the polynomial , where is the golden ratio. Let the point be given by
.
Let the matrix be given by
.
is the rotation around the axis by an angle of , counterclockwise. Let the linear transformations
be the transformations which send a point to the even permutations of with an even number of minus signs.
The transformations constitute the group of rotational symmetries of a regular tetrahedron.
The transformations , constitute the group of rotational symmetries of a regular icosahedron.
Then the 60 points are the vertices of a small snub icosicosidodecahedron. The edge length equals , the circumradius equals , and the midradius equals .
For a small snub icosicosidodecahedron whose edge length is 1,
the circumradius is
^Birrell, Robert J. (May 1992). The Yog-sothoth: analysis and construction of the small inverted retrosnub icosicosidodecahedron (M.S.). California State University.
^Bowers, Jonathan (2000). "Uniform Polychora"(PDF). In Reza Sarhagi (ed.). Bridges 2000. Bridges Conference. pp. 239–246.