Demi-grapheEn théorie des graphes, une branche des mathématiques, un demi-graphe (en anglais half graph) est un type particulier de graphe biparti. Ces graphes sont appelés demi-graphes car ils possèdent environ la moitié des arêtes d'un graphe biparti complet sur les mêmes sommets. Leur nom a été donné à ces graphes par Paul Erdős et András Hajnal[1]. DéfinitionPour définir un demi-graphe sur sommets notés et , on relie à par une arête chaque fois que [1]. La même notion peut aussi être défini, et de la même manière, pour des graphes infinis sur deux copies d'un ensemble ordonné de sommets[1]. Le demi-graphe sur les entiers naturels (avec leur ordre habituel) a la propriété que chaque sommet a degré fini . Les sommets de l'autre côté de la bipartition ont en revanche un degré infini[2]. IrrégularitéUne des applications des demi-graphes est dans le lemme de régularité de Szemerédi, qui stipule que les sommets de tout graphe peuvent être partitionnés en un nombre constant de sous-ensembles de même taille, de sorte que la plupart des paires de sous-ensembles sont régulières (les arêtes reliant une paire se comportent d'une certaine manière comme un graphe aléatoire d'une densité particulière). Si le demi-graphe est partitionné de cette manière en sous-ensembles, le nombre de paires irrégulières est au moins proportionnel à . Par conséquent, il n'est pas possible de renforcer le lemme de régularité pour montrer l'existence d'une partition pour laquelle toutes les paires sont régulières[3]. CouplageUn demi-graphe a un couplage parfait unique. C'est facile à vérifier par récurrence : doit être lié à son seul voisin et les sommets restants forment un autre demi-graphe. Réciproquement, tout graphe bipartite avec un couplage parfait unique est un sous-graphe d'un demi-graphe[4]. Graphes à nombre chromatique non dénombrableSi le nombre chromatique d'un graphe est non dénombrable, alors le graphe contient nécessairement comme sous-graphe un demi-graphe sur les entiers naturels. Ce demi-graphe, à son tour, contient tout graphe biparti complet dans lequel un côté de la bipartition est fini et l'autre côté est infini dénombrable[5]. Notes et références
Article liéInformation related to Demi-graphe |