In general, snubs have chiral symmetry with two forms: with clockwise or counterclockwise orientation. By Kepler's names, a snub can be seen as an expansion of a regular polyhedron: moving the faces apart, twisting them about their centers, adding new polygons centered on the original vertices, and adding pairs of triangles fitting between the original edges.
The terminology was generalized by Coxeter, with a slightly different definition, for a wider set of uniform polytopes.
Conway snubs
John Conway explored generalized polyhedron operators, defining what is now called Conway polyhedron notation, which can be applied to polyhedra and tilings. Conway calls Coxeter's operation a semi-snub.[2]
In this notation, snub is defined by the dual and gyro operators, as s = dg, and it is equivalent to an alternation of a truncation of an ambo operator. Conway's notation itself avoids Coxeter's alternation (half) operation since it only applies for polyhedra with only even-sided faces.
In 4-dimensions, Conway suggests the snub 24-cell should be called a semi-snub 24-cell because, unlike 3-dimensional snub polyhedra are alternated omnitruncated forms, it is not an alternated omnitruncated 24-cell. It is instead actually an alternated truncated 24-cell.[3]
A regular polyhedron (or tiling), with Schläfli symbol , and Coxeter diagram, has truncation defined as , and , and has snub defined as an alternated truncation , and . This alternated construction requires q to be even.
A quasiregular polyhedron, with Schläfli symbol or r{p,q}, and Coxeter diagram or , has quasiregular truncation defined as or tr{p,q}, and or , and has quasiregular snub defined as an alternated truncated rectification or htr{p,q} = sr{p,q}, and or .
For example, Kepler's snub cube is derived from the quasiregular cuboctahedron, with a vertical Schläfli symbol, and Coxeter diagram, and so is more explicitly called a snub cuboctahedron, expressed by a vertical Schläfli symbol , and Coxeter diagram . The snub cuboctahedron is the alternation of the truncated cuboctahedron, , and .
Regular polyhedra with even-order vertices can also be snubbed as alternated truncations, like the snub octahedron, as , , is the alternation of the truncated octahedron, , and . The snub octahedron represents the pseudoicosahedron, a regular icosahedron with pyritohedral symmetry.
The snub tetratetrahedron, as , and , is the alternation of the truncated tetrahedral symmetry form, , and .
Coxeter's snub operation also allows n-antiprisms to be defined as or , based on n-prisms or , while is a regular n-hosohedron, a degenerate polyhedron, but a valid tiling on the sphere with digon or lune-shaped faces.
A rectified polychoron = r{p,q,r}, and has snub symbol = sr{p,q,r}, and .
Examples
There is only one uniform convex snub in 4-dimensions, the snub 24-cell. The regular 24-cell has Schläfli symbol, , and Coxeter diagram, and the snub 24-cell is represented by , Coxeter diagram. It also has an index 6 lower symmetry constructions as or s{31,1,1} and , and an index 3 subsymmetry as or sr{3,3,4}, and or .
The related snub 24-cell honeycomb can be seen as a or s{3,4,3,3}, and , and lower symmetry or sr{3,3,4,3} and or , and lowest symmetry form as or s{31,1,1,1} and .
The only uniform snub hyperbolic uniform honeycomb is the snub hexagonal tiling honeycomb, as s{3,6,3} and , which can also be constructed as an alternated hexagonal tiling honeycomb, h{6,3,3}, . It is also constructed as s{3[3,3]} and .
Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN978-0-471-01003-6[1], Googlebooks [2]
(Paper 17) Coxeter, The Evolution of Coxeter–Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233–248]
(Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
(Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559–591]
(Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3–45]
Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)