It was approved for medical use in the United States[19][15][20] and in the European Union in 2013.[12] In 2020, it was the 243rd most commonly prescribed medication in the United States, with more than 1million prescriptions.[21][22]
Medical uses
Vortioxetine is utilized as a treatment for major depressive disorder,[15] with its effectiveness shown to be similar to other antidepressants[15][23][24] and its effect size has been described as modest.[25] Vortioxetine may be used when other treatments have failed.[11][26][27][28] A 2017 Cochrane review on vortioxetine determined that its place in the treatment of severe depression is unclear due to low-quality evidence and that more studies comparing vortioxetine to selective serotonin reuptake inhibitors (SSRIs), the typical first-line treatments, are needed.[29] Vortioxetine appears to work in depressed patients with anxiety.[30]
Vortioxetine is also used off-label for anxiety.[31] A 2016 review found it was not useful in generalized anxiety disorder at 2.5, 5, and 10 mg doses (15 and 20 mg doses were not tested).[32] A 2019 meta-analysis found that vortioxetine did not produce statistically significant results over placebo in the symptoms, quality of life, and remission rates of generalized anxiety disorder, but it was well-tolerated.[33] However, a 2018 meta-analysis supported use and efficacy of vortioxetine for generalized anxiety disorder, though stated that more research was necessary to strengthen the evidence.[34] A 2021 systematic review and meta-analysis concluded that there was uncertainty about the effectiveness of vortioxetine for anxiety due to existing evidence being of very low-quality.[35] In a 2020 network meta-analysis of randomized controlled trials, vortioxetine was among the lowest remission rates for generalized anxiety disorder of the included medications (odds ratio = 1.30 for vortioxetine, range of odds ratios for other agents = 1.13–2.70).[36]
The most common side effects reported with vortioxetine are nausea, vomiting, constipation, and sexual dysfunction, among others.[11] With the exceptions of nausea and sexual dysfunction, these side effects were reported by less than or equal to 10% of study participants given vortioxetine.[11][39] Significant percentages of placebo-treated participants also report these side effects.[11][39] Discontinuation of treatment due to adverse effects in clinical trials was 8% with vortioxetine versus 3% with placebo.[39]
Sexual dysfunction, such as decreased libido, abnormal orgasm, delayed ejaculation, and erectile dysfunction, are well-known side effects of SSRIs and serotonin–norepinephrine reuptake inhibitors (SNRIs).[18] In clinical trials, sexual dysfunction occurred more often with vortioxetine than with placebo and appeared to be dose-dependent.[18][17] Incidence of treatment-emergent sexual dysfunction as measured with the Arizona Sexual Experience Scale (ASEX) were 14 to 20% for placebo and 16 to 34% for vortioxetine over a dosage range of 5 to 20 mg/day.[18][17] The incidence of sexual dysfunction with vortioxetine was similar to that with the SNRI duloxetine, which had an incidence of 26 to 28% at the used dosage of 60 mg/day.[18] However, treatment-emergent sexual dysfunction caused by a prior SSRI was better improved by switching to vortioxetine than by switching to the SSRI escitalopram.[11] In another study, vortioxetine at a dosage of 10 mg/day though not at 20 mg/day produced less sexual dysfunction than the SSRI paroxetine.[11] These findings suggest that although vortioxetine can still cause sexual dysfunction itself, it may cause somewhat less sexual dysfunction than SSRIs and might be a useful alternative option for people experiencing sexual dysfunction with these medications.[11][40] The rates of spontaneously reported sexual dysfunction are much lower than those obtained when researchers specifically ask subjects about sexual dysfunction (using the ASEX rating scale).[17][18][11]
Sexual dysfunction with vortioxetine at different doses in clinical trials[11][18]
Quantification method
Group
Placebo
Vortioxetine
Duloxetine
5 mg/day
10 mg/day
15 mg/day
20 mg/day
60 mg/day
Measured by ASEXTooltip Arizona Sexual Experience Scale
Men
14%
16%
20%
19%
29%
26%
Women
20%
22%
23%
33%
34%
28%
Spontaneously reported
Men
2%
3%
4%
4%
5%
?
Women
<1%
<1%
1%
<1%
2%
?
Notes: Vortioxetine and duloxetine (an SNRI) were directly compared in randomized clinical trials.
Based on preliminary clinical studies, vortioxetine may cause less emotional blunting than SSRIs and SNRIs.[41][42]
Bupropion, a strong CYP2D6 inhibitor, has been found to increase peak levels of vortioxetine by 2.1-fold and total vortioxetine levels by 2.3-fold (bupropion dosed at 300 mg/day and vortioxetine dosed at 10 mg/day).[13] The incidence of side effects with vortioxetine, like nausea, headache, vomiting, and insomnia, was correspondingly increased with the combination.[13] Other strong CYP2D6 inhibitors, like fluoxetine, paroxetine, and quinidine, may have similar influences on the pharmacokinetics of vortioxetine, and it is recommended that the dosage of vortioxetine be reduced by half when it is administered in combination with such medications.[13][11] Lesser interactions have additionally been identified for vortioxetine with the cytochrome P450 inhibitors ketoconazole and fluconazole.[13]
Rifampicin, a strong and broad cytochrome P450 inducer (though notably not of CYP2D6), has been found to decrease peak levels of vortioxetine by 51% and total levels of vortioxetine by 72% (rifampicin dosed at 600 mg/day and vortioxetine at 20 mg/day).[13] Similar influences on vortioxetine pharmacokinetics may also occur with other strong cytochrome P450 inducers like carbamazepine and phenytoin.[13] As such, it is recommended that increasing vortioxetine dosage be considered when it is given in combination with strong cytochrome P450 inducers.[13] The maximum recommended dose should not exceed three times the original vortioxetine dose.[13][11]
Vortioxetine and its metabolites show no meaningful interactions with a variety of assessed cytochrome P450 enzymes and transporters (e.g., P-glycoprotein) and hence vortioxetine is not expected to importantly influence the pharmacokinetics of other medications.[11][13]
It has been claimed that the serotonin transporter (SERT) and 5-HT3 receptor may be primarily occupied at lower clinical doses of vortioxetine and that the 5-HT1B, 5-HT1A, and 5-HT7 receptors may additionally be occupied at higher doses.[46]Occupancy of the serotonin transporter with vortioxetine in young men was found to be highest in the raphe nucleus with median occupancies of 25%, 53%, and 98% after 9 days of administration with 2.5, 10, and 60 mg/day vortioxetine.[13][48] In another study, serotonin transporter occupancy in men was 50%, 65%, and ≥80% for 5, 10, and 20 mg/day vortioxetine.[13][11]
Vortioxetine at 5 mg/day may produce antidepressant effects and result in SERT occupancy as low as 50%.[13][46][49] This is in apparent contrast to SSRIs and SNRIs, which appear to require a minimum of 70 to 80% occupancy for antidepressant efficacy.[13][46][50] These findings are suggestive that the antidepressant effects of vortioxetine may be mediated by serotonin receptor interactions in addition to serotonin reuptake inhibition.[13][46] A study found no significant occupancy of the 5-HT1A receptor with vortioxetine at 30 mg/day for 9 days, which suggests that at least this specific serotonin receptor may not be involved in the clinical pharmacology of vortioxetine.[46][14][48] However, methodological concerns were noted that may limit the interpretability of this result.[46][48][14] Occupancy of other serotonin receptors like 5-HT3 and 5-HT7 by vortioxetine in humans does not seem to have been studied.[18][46] In relation to the preceding, the contribution of serotonin receptor interactions to the antidepressant effects of vortioxetine is unknown and remains to be established.[13][11][18][17] Uncertainties remain about whether vortioxetine is indeed a clinically multimodal antidepressant or whether it is effectively "[just] another selective serotonin reuptake inhibitor".[17][18]
Antagonism of the 5-HT3 receptor has been found to enhance the increase in brain serotonin levels produced by serotonin reuptake inhibition in animal studies.[46][14] Whether or not the 5-HT3 receptor antagonism of vortioxetine likewise does this in humans or contributes to its clinical antidepressant efficacy is unclear.[17][18] SSRIs and 5-HT1A receptor agonists often produce nausea as a side effect, whereas 5-HT3 receptor antagonists like ondansetron are antiemetics and have been found to be effective in treating SSRI-induced nausea.[46] It was thought that the 5-HT3 receptor antagonism of vortioxetine would reduce the incidence of nausea relative to SSRIs.[46] However, clinical trials found significant and dose-dependent rates of nausea with vortioxetine that appeared to be comparable to those found with the SNRI duloxetine.[11][18]
Pharmacokinetics
Vortioxetine is well-absorbed when taken orally and has an oral bioavailability of 75%.[13] It is systemically detectable after a single oral dose by 0.781 hours.[13]Peak levels of vortioxetine are reached within 7 to 11 hours post-dose with single or multiple doses.[13]Steady-state levels of vortioxetine are generally reached within 2 weeks of administration, with 90% of individuals reaching 90% of steady state after 12 days of administration.[13] Steady-state peak levels of vortioxetine with doses of 5, 10, and 20 mg/day were 9, 18, and 33 ng/mL, respectively.[13] The accumulation index of vortioxetine (area-under-the-curve levels after a single dose versus at steady state) is 5 to 6.[13] A loading dose given intravenously has been found to achieve steady-state levels more rapidly with oral vortioxetine therapy.[52] The pharmacokinetics of vortioxetine are known to be linear and dose proportional over a range of 2.5 to 75 mg for single doses and 2.5 to 60 mg for multiple doses.[13] Food has no influence on the pharmacokinetics of vortioxetine.[13]
The estimated total clearance of vortioxetine ranges from 30 to 41 L/h.[13] The elimination half-life of vortioxetine is 66 hours, with a range of 59 to 69 hours after single or multiple doses.[13]Elimination of vortioxetine is almost entirely via the liver (99%) rather than the kidneys (<1%).[13] Approximately 85% of vortioxetine was recovered in a single-dose excretion study after 15 days, with 59% in urine and 26% in feces.[13]
Pharmacogenomics
Genetic variations in cytochrome P450enzymes can influence exposure to vortioxetine.[13]CYP2D6extensive metabolizers have approximately 2-fold higher clearance of vortioxetine than CYP2D6 poor metabolizers.[13] The estimated clearance rates were 52.9, 34.1, 26.6, and 18.1 L/h for CYP2D6 ultra-rapid metabolizers, extensive metabolizers, intermediate metabolizers, and poor metabolizers.[13]Area-under-the-curve levels of vortioxetine were 35.5% lower in CYP2D6 ultra-rapid metabolizers than in extensive metabolizers, though with significant overlap due to interindividual variability.[13] Dosage adjustment for CYP2D6 ultra-rapid metabolizers is considered to not be necessary.[13] Vortioxetine exposure in CYP2D6 poor metabolizers is expected to be approximately twice as high as in extensive metabolizers.[13] Depending on the individual response, dosage adjustment may be considered for CYP2D6 poor metabolizers, with a maximum recommended dosage of 10 mg/day for known such individuals.[13] In addition to CYP2D6, CYP2C19 extensive metabolizers have 1.4-fold higher clearance of vortioxetine than poor metabolizers.[13] However, this is not considered to be clinically important and dose adjustment is not considered to be necessary based on CYP2C19 status.[13]
Chemistry
Vortioxetine (1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine) is a bis-aryl-sulfanyl amine as well as piperazinederivative.[39] The acid dissociation constant (pKa) values for vortioxetine hydrobromide were determined to be 9.1 (± 0.1) and 3.0 (± 0.2) according to an Australian Public Assessment Report.[53]
History
Vortioxetine was invented by scientists at Lundbeck who reported the rationale and synthesis for the drug (then called Lu AA21004) in a 2011 paper.[44][46]
In 2007, the compound was in Phase II clinical trials, and Lundbeck and Takeda entered into a partnership in which Takeda paid Lundbeck $40 million up-front, with promises of up to $345 million in milestone payments, and Takeda agreed to pay most of the remaining cost of developing the drug. The companies agreed to co-promote the drug in the US and Japan, and that Lundbeck would receive a royalty on all such sales. The deal included another drug candidate, tedatioxetine (Lu AA24530), and could be expanded to include two other Lundbeck compounds.[54]
It is manufactured by the pharmaceutical companies Lundbeck and Takeda.[11]
Names
Vortioxetine was previously sold under the brand name Brintellix in the United States, but in May 2016, the US Food and Drug Administration (FDA) approved a name change to Trintellix in order to avoid confusion with the blood-thinning medication Brilinta (ticagrelor).[57][58] Other brand names include Torvox, Vantaxa, Voxigain, and Trivoxetin.
^ abcdeBundgaard C, Pehrson AL, Sánchez C, Bang-Andersen B (2 January 2015). "Case Study 2". Blood-Brain Barrier in Drug Discovery. Hoboken, NJ: John Wiley & Sons, Inc. pp. 505–520. doi:10.1002/9781118788523.ch23. ISBN9781118788523.
^British national formulary : BNF 76 (76 ed.). Pharmaceutical Press. 2018. p. 376. ISBN9780857113382.
^ abcdefgKeks NA, Hope J, Culhane C (June 2015). "Vortioxetine: A multimodal antidepressant or another selective serotonin reuptake inhibitor?". Australas Psychiatry. 23 (3): 210–3. doi:10.1177/1039856215581297. PMID25907797. S2CID21642202.
^ abcdefghijklmZhang J, Mathis MV, Sellers JW, Kordzakhia G, Jackson AJ, Dow A, et al. (January 2015). "The US Food and Drug Administration's perspective on the new antidepressant vortioxetine". J Clin Psychiatry. 76 (1): 8–14. doi:10.4088/JCP.14r09164. PMID25562777.
^Sowa-Kućma M, Pańczyszyn-Trzewik P, Misztak P, Jaeschke RR, Sendek K, Styczeń K, et al. (August 2017). "Vortioxetine: A review of the pharmacology and clinical profile of the novel antidepressant". Pharmacol Rep. 69 (4): 595–601. doi:10.1016/j.pharep.2017.01.030. PMID28499187. S2CID43104089.
^Connolly KR, Thase ME (2016). "Vortioxetine: a New Treatment for Major Depressive Disorder". Expert Opinion on Pharmacotherapy. 17 (3): 421–31. doi:10.1517/14656566.2016.1133588. PMID26679430. S2CID40432194. The authors suggest that vortioxetine is currently a good second-line antidepressant option and shows promise, pending additional long-term data, to become a first-line antidepressant option.
^Köhler S, Cierpinsky K, Kronenberg G, Adli M (January 2016). "The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants". Journal of Psychopharmacology. 30 (1): 13–22. doi:10.1177/0269881115609072. PMID26464458. S2CID21501578.
^Pae CU, Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, et al. (May 2015). "Vortioxetine, a multimodal antidepressant for generalized anxiety disorder: a systematic review and meta-analysis". Journal of Psychiatric Research. 64: 88–98. doi:10.1016/j.jpsychires.2015.02.017. PMID25851751.
^ abcdefghDubovsky SL (May 2014). "Pharmacokinetic evaluation of vortioxetine for the treatment of major depressive disorder". Expert Opinion on Drug Metabolism & Toxicology. 10 (5): 759–66. doi:10.1517/17425255.2014.904286. PMID24684240. S2CID9721842.
^Hughes S, Lacasse J, Fuller RR, Spaulding-Givens J (September 2017). "Adverse effects and treatment satisfaction among online users of four antidepressants". Psychiatry Research. 255: 78–86. doi:10.1016/j.psychres.2017.05.021. PMID28531820. S2CID4572360.
^ abMoore N, Bang-Andersen B, Brennum L, Fredriksen K, Hogg S, Mork A, et al. (August 2008). "Lu AA21004: a novel potential treatment for mood disorders". European Neuropsychopharmacology. 18 (Supplement 4): S321. doi:10.1016/S0924-977X(08)70440-1. S2CID54253895.{{cite journal}}: CS1 maint: overridden setting (link)
^ abcBang-Andersen B, Ruhland T, Jørgensen M, Smith G, Frederiksen K, Jensen KG, et al. (May 2011). "Discovery of 1-[2-(2,4-dimethylphenylsulfanyl)phenyl]piperazine (Lu AA21004): a novel multimodal compound for the treatment of major depressive disorder". Journal of Medicinal Chemistry. 54 (9): 3206–3221. doi:10.1021/jm101459g. PMID21486038.{{cite journal}}: CS1 maint: overridden setting (link)
^ abcStenkrona P, Halldin C, Lundberg J (October 2013). "5-HTT and 5-HT(1A) receptor occupancy of the novel substance vortioxetine (Lu AA21004). A PET study in control subjects". European Neuropsychopharmacology. 23 (10): 1190–8. doi:10.1016/j.euroneuro.2013.01.002. PMID23428337. S2CID44631551.
^Fu J, Chen Y (January 2015). "The efficacy and safety of 5 mg/d Vortioxetine compared to placebo for major depressive disorder: A meta-analysis". Psychopharmacology (Berl). 232 (1): 7–16. doi:10.1007/s00213-014-3633-z. PMID24871704. S2CID17263858.
^Preskorn SH (January 2012). "The use of biomarkers in psychiatric research: how serotonin transporter occupancy explains the dose-response curves of SSRIs". Journal of Psychiatric Practice. 18 (1): 38–45. doi:10.1097/01.pra.0000410986.61593.46. PMID22261982. S2CID30529325.
^Alcántara Montero A, Pacheco de Vasconcelos SR (July 2021). "Role of vortioxetine in the treatment of neuropathic pain". Revista Espanola de Anestesiologia y Reanimacion. doi:10.1016/j.redar.2021.04.001. PMID34243960. S2CID241004816.