Conjecture de SzpiroEn théorie des nombres, la conjecture de Szpiro met en relation le conducteur (en) et le discriminant d'une courbe elliptique. Sous une forme légèrement modifiée, elle est équivalente à la conjecture abc bien connue. Elle porte le nom de Lucien Szpiro qui l'a formulée dans les années 1980. Enoncé originalLa conjecture stipule que: étant donné ε > 0, il existe une constante C ( ε ) telle que pour toute courbe elliptique E définie sur Q avec un discriminant minimal Δ et un conducteur f, nous avons Conjecture de Szpiro modifiéeLa conjecture de Szpiro modifiée déclare que: étant donné ε > 0, il existe une constante C ( ε ) telle que pour toute courbe elliptique E définie sur Q avec pour invariants c4, c6 et pour conducteur f (en utilisant la notation de l'algorithme de Tate (en)), nous avons Preuves revendiquéesEn août 2012, Shinichi Mochizuki revendique une preuve de la conjecture de Szpiro en développant une nouvelle théorie appelée théorie de Teichmüller inter-universelle (en) (IUTT)[1]. Cependant, les articles n'ont pas été acceptés par la communauté mathématique comme fournissant une preuve de la conjecture[2],[3],[4], avec Peter Scholze et Jakob Stix concluant en mars 2018 que l'écart était « si grave que ... de petites modifications ne sauvera pas la stratégie de preuve »[5],[6],[7]. Références(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Szpiro's conjecture » (voir la liste des auteurs).
Bibliographie
Liens externesInformation related to Conjecture de Szpiro |